

Deliverable
Project Acronym: ImmersiaTV

Grant Agreement number: 688619

Project Title: Immersive Experiences around TV, an integrated toolset for
the production and distribution of immersive and interactive
content across devices.

D3.1 Design Architecture

Revision: 2.0

Authors:

 Maciej Glowiak (PSNC), Szymon Malewski (PSNC) – main editors

Delivery date: M25

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement 688619

Dissemination Level

P Public x

C Confidential, only for members of the consortium and the Commission Services

Abstract: This deliverable defines the core technical concepts of ImmersiaTV project, it lays out the global

architecture of the different software and hardware modules as well as the standards that will be used in the

scope of the project. It establishes the architecture and the interfaces of the various functional blocks that

comprises the immersive system. Functionality of the ImmersiaTV project is based on several modules that

implement particular functions required for video acquisition, video processing and encoding, video

production, content delivery and reception and display. All the main components are described in details in

order to provide the reference for implementation and integration activities in the project. Finally, the Quality

of Experience methodology and test scenarios are pointed out to support and formalize project results

validation procedure.

The document provides overall system architecture but it is focused on Pilot 1, 2 and 3 requirements collected

and analysed in Deliverable D2.3

1 D3.1 Design architecture Version 2.0, 30.01.2018

REVISION HISTORY

Revision Date Author Organi
sation

Description

0.9 20 Jul 2016 Maciej Glowiak PSNC Previous version of D3.1 (M4) as
an input for this document

1.0 16 Dec 2017 Maciej Glowiak PSNC Collected contribution from all
partners

1.1 30 Dec 2017 Joan Llobera I2CAT First review

1.2 17 Jan 2017 Luk Overmeire VRT Second review

1.3 19 Jan 2017 Joan Llobera I2cat Technical review

1.4 3 Feb 2017 Stephane Valente,
David McNally,

Philippe Bekaert

All Updates regarding technical
review

1.5 6 Feb 2017 Maciej Glowiak PSNC Integration of partners
contribution

1.6 15 Feb 2017 Luk Overmeire VRT Final review

1.7 23 Feb 2017 Maciej Glowiak PSNC Integration of partners
corrections, final corrections and

styling

1.8 24 May 2017 Maciej Glowiak PSNC Changes after Mid-Term Review
according to Reviewers’

comments. Integration partners’
contribution

1.92 11 Jan 2018 Maciej Glowiak PSNC Chapter 6. Integration of Pilot 3
contribution from partners

1.93 29 Jan 2018 Alexandr
Kelembet

Szymon Malewski

CGY

PSNC

Offline production tools

Corrections and modifications,
requirements from D2.3

2.0 30 Jan 2018 Maciej Glowiak

Szymon Malewski

PSNC Final editing, formatting,
corrections

2 D3.1 Design architecture Version 2.0, 30.01.2018

Statement of originality:

This document contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made through
appropriate citation, quotation or both.

Disclaimer

The information, documentation and figures available in this deliverable, is written by the ImmersiaTV
(Immersive Experiences around TV, an integrated toolset for the production and distribution of immersive
and interactive content across devices) – project consortium under EC grant agreement H2020 - ICT15
688619 and does not necessarily reflect the views of the European Commission. The European
Commission is not liable for any use that may be made of the information contained herein.

3 D3.1 Design architecture Version 2.0, 30.01.2018

EXECUTIVE SUMMARY

This deliverable defines the core technical concepts and general architecture of the ImmersiaTV

project for implementation and development purposes. Based on the state-of-the-art analysis,

scope of the project pilots and technical requirements and specifications defined in D2.3 all

partners of WP3 worked together and performed various actions to define the different modules

and functionalities as well as interactions between these modules. This deliverable was created

incrementally, building further upon the previous version of D3.1. The previous version focused

mostly on designing the architecture for Pilot 1. The current version was modified and enhanced

by issues related to Pilot 2, which means the document describes both off-line and live systems.

Chapter 1 presents the background of the project, including the purpose of this document and

relation between all corresponding Work Packages.

Chapter 2 contains all the requirements on content production and content consumption taken

from WP2 (D2.3) as well as some considerations on Pilot execution (from WP4).

The general architecture and workflow, which are presented in Chapter 3, take into account

both off-line and live scenarios for Pilot 1 and 2 and makes the system ready for further

extensions (Pilot 3). However, the document includes already some details regarding Pilot 3 and

advanced live scenario with elements of Phase 3. After the global architecture is defined and

depicted, all the modules are characterised, defined and elaborated.

Chapter 4 defines Phase 1 platform architecture towards Pilot 1. Section 4.1 contains

architecture overview for Pilot 1 and introduces all the components described in next sections.

In Section 4.2 the capture and stitching process is described, containing selected camera

systems, their capabilities and possible usage in the different Pilots. This chapter also contains

requirements for stitching software input and output as well as the architecture and

functionality of the omnidirectional video acquisition and processing.

Section 4.3 provides information on production tools. It concentrates on an off-line post

production process for synchronized and interactive multi-platform 360° content across multiple

devices using Adobe After Effects and Adobe Premiere.

Section 4.4 describes the encoding process and contains a list of H.264/AVC codec parameters

agreed between modules and tools for pilot 1. The codec definition is a result of discussions

between all partners involved in content creation, editing, encoding, streaming and playback.

Section 4.5 is dedicated to content distribution and describes the DASH concept that will be

used in the ImmersiaTV distribution system for off-line workflows.

Section 4.6 provides information on the reception and display side, where multiple streams are

synchronously transported to end-users’ devices such as Head Mounted Display, tablets and

TVs. The solution of synchronisation relies on HbbTV 2.0 concepts and describes how the

different types of content (omnidirectional and directive) can be synchronized across devices

and how interaction between both omnidirectional and directive content can be realised in an

immersive display.

Chapter 4.7 describes the Quality of Experience methodology and test scenarios. They are
intended to support and formalize project results validation procedure.

Chapter 5 extends the global architecture towards Pilot 2. The contents is focused on live
scenario and defines new capabilities and functionalities of hardware and software components.

4 D3.1 Design architecture Version 2.0, 30.01.2018

In section 5.1 the general architecture for Phase 2 is presented as well as all the components
are introduced. This gives good overview of the live ImmersiaTV system workflow.

Section 5.2 describes new hardware omnidirectional cameras and stitching boxes (Orah 4i and
EDM cameras). Architecture and workflow of these components are defined here.

Section 5.3 describes Live Production Tools, which are new components of the ImmersiaTV
system architecture for Pilot 2. Live Production Tools are the central point of the workflow for a
live scenario connecting capturing, editing and streaming functionalities.

Section 5.4 is dedicated to encoding issues, and contains considerations for H.264/AVC and
H.265/HEVC usage in the project. Besides requirements for encoding components, the
omnidirectional image mappings are described as well as a comparison of the mentioned codecs
is presented.

Sections 5.5 and 5.6 explain the Distribution and Reception and Display components, but the
architecture of them don’t differ from Phase 1. During the first phase of the project, these
components were designed and implemented to enable live scenarios in the same way as off-
line ones.

In Section 5.7 Quality of Experience considerations are addressed and the architecture of the
component is presented. The section also contains metrics to be computed and collected during
QoE assessment.

Chapter 6 contains additional architectural and workflow design dedicated to extensions in

Phase 3. Phase 3 extends two first stages of the project and combines off-line and live

scenarios. First of all, the updated architecture diagram is presented in Section 6.1. Then

Section 6.2 introduces major new functionalities considered in Phase 3. These include

Exploration Mode, Social Media links, Immersive audio, Replays and advanced synchronization.

Section 6.3 describes new elements of Capture module, especially Studio.One camera system,

that was implemented and deployed between Phase 2 and Phase 3.

Sections 6.4 and 6.5 contains new functionalities and architecture changes in Off-Line and Live

Production Tools. As Pilot 3 supports both scenarios – live and off-line, some changes are

required in both tools.

Section 6.6 provides updates on encoding and decoding process, especially dedicated to

H2.6.5/HEVC codec and connections of the codec to QoE tools (feedback from QoE to the

Encoder).

Delivery and Reception in Phase 3 is described in Section 6.7. There are no significant changes,

however audio functionalities are taken into consideration.

Section 6.8 brings some advanced functionalities that must be implemented in order to

support Exploration Mode and Social media sharing. This means updates in Metadata that

support moving to another scene, social media bindings, immersive audio or screen cast.

Last section of Chapter 6 (Section 6.9) focuses on Quality of Experience and describes the

architecture of the component as well as required workflow.

Finally, Chapter 7 contains the conclusions from the document.

5 D3.1 Design architecture Version 2.0, 30.01.2018

CONTRIBUTORS

First Name Last Name Company e-Mail

Adriaan Barri IMEC-ETRO abarri@etro.vub.ac.be

Philippe Bekaert IMEC-EDM philippe.bekaert@iminds.be

Touradj Ebrahimi EPFL touradj.ebrahimi@epfl.ch

Sergi Fernandez I2CAT sergi.fernandez@i2cat.net

Maciej Glowiak PSNC mac@man.poznan.pl

Alexandr Kelembet CINEGY kelembet@cinegy.com

Joan Llobera I2CAT joan.llobera@i2cat.net

Saeed Mahmoudpour IMEC-ETRO smahmoud@etro.vub.ac.be

Szymon Malewski PSNC szymonm@man.poznan.pl

David Mc Nally EPFL david.mcnally@epfl.ch

Juan Nunez I2CAT juan.antonio.nunez@i2cat.net

Luk Overmeire VRT Luk.Overmeire@VRT.BE

Maciej Strozyk PSNC mackostr@man.poznan.pl

Stéphane Valente VIDEOSTITCH stephane@video-stitch.com

Wendy Van den Broeck IMEC-SMIT wvdbroec@vub.ac.be

Mikołaj Węgrzynowski PSNC mwegrzyn@man.poznan.pl

6 D3.1 Design architecture Version 2.0, 30.01.2018

CONTENTS

Revision History .. 1

Executive Summary ... 3

Contributors ... 5

Table of Figures... 10

List of acronyms .. 13

1. Introduction .. 14

1.1. Purpose of this document .. 14

1.2. Scope of this document ... 14

1.3. Status of this document ... 14

1.4. Relation with other ImmersiaTV activities .. 15

2. Requirements Analysis .. 15

2.1. Requirements on Content Creation.. 15

2.1.1. Pilot 1 .. 15

2.1.2. Pilot 2 .. 17

2.1.3. Pilot 3 .. 21

2.2. Requirements on Content Consumption .. 23

2.2.1. Pilot 1 .. 23

2.2.2. Pilot 2 .. 24

2.2.3. Pilot 3 .. 25

2.1. Requirements on Pilot execution – WP4 .. 27

3. General Workflow and Platform Overview .. 27

3.1. ImmersiaTV platform ... 27

3.1.1. Capture .. 28

3.1.2. Stitching ... 28

3.1.3. Encoding .. 28

3.1.4. Off-Line production .. 28

3.1.5. Live production .. 29

3.1.6. Distribution .. 29

3.1.7. Reception and interaction .. 29

3.1.8. Quality of Experience ... 29

3.2. Workflow... 29

4. Phase 1 Platform and Architecture .. 30

4.1. Architecture Overview ... 30

7 D3.1 Design architecture Version 2.0, 30.01.2018

4.2. Capture and Stitching .. 31

4.2.1. Description .. 31

4.2.2. Architecture ... 31

4.2.3. Workflow ... 33

4.3. Off-line production Tools ... 34

4.3.1. Description .. 34

4.3.2. Software architecture .. 35

4.3.3. Workflow ... 38

4.4. Encoding .. 39

4.4.1. Description .. 39

4.4.2. Architecture ... 39

4.4.3. Workflow ... 40

4.5. Content Distribution .. 41

4.5.1. Description .. 41

4.5.2. Software architecture .. 41

4.5.3. Workflow ... 42

4.6. Reception, Interaction and Display .. 42

4.6.1. Description .. 42

4.6.2. Software architecture .. 44

4.6.3. Session management device .. 44

4.6.4. Receiver devices .. 46

4.7. Quality of Experience ... 52

4.7.1. Description .. 52

4.7.1. Metrics for quality assessment ... 53

4.7.2. Objective quality metrics.. 53

5. Phase 2 Platform and Architecture .. 55

5.1. Architecture overview ... 55

5.2. Live Capture and Stitching ... 56

5.2.1. Overview ... 56

5.2.2. Omnidirectional camera systems ... 57

5.2.3. Live stitching system .. 61

5.2.4. Studio.One stitching ... 64

5.3. Live production Tools... 67

5.3.1. Description .. 67

5.3.2. Architecture ... 68

8 D3.1 Design architecture Version 2.0, 30.01.2018

5.3.3. Workflow ... 69

5.4. Encoding .. 69

5.4.1. Overview ... 69

5.4.2. Requirements .. 70

5.4.3. Real-time encoding architecture .. 71

5.4.4. Comparison of H.264/AVC vs. H.265 .. 73

5.4.5. Re-mapping ... 73

5.5. Distribution ... 75

5.6. Reception, Interaction and Display .. 75

5.7. Quality of Experience ... 75

5.7.1. Description .. 75

5.7.2. Software Architecture .. 75

5.7.3. Workflow ... 78

6. Phase 3 Platform and Architecture .. 79

6.1. Architecture overview ... 79

6.2. General extensions in Pilot 3 .. 79

6.3. Capture and Stitching .. 82

6.4. Off-line Production tools.. 83

6.4.1. Description .. 83

6.4.1. Architecture ... 84

6.5. Live Production tools ... 84

6.5.1. Description .. 84

6.5.1. Architecture ... 84

6.5.2. Workflow ... 85

6.6. Encoding and Decoding ... 86

6.6.1. Description .. 86

6.6.1. Architecture ... 86

6.7. Delivery and Reception .. 88

6.7.1. Description .. 88

6.7.1. Architecture ... 88

6.7.2. Workflow ... 88

6.8. Interaction and Display .. 88

6.8.1. Description .. 88

6.8.2. Screen cast and social media sharing.. 89

6.8.3. Immersive audio .. 89

9 D3.1 Design architecture Version 2.0, 30.01.2018

6.8.4. Extended synchronization .. 90

6.8.5. Metadata ... 92

6.9. Quality Of Experience .. 94

6.9.1. Description .. 94

6.9.2. Architecture ... 94

6.9.3. Workflow ... 95

7. Conclusions ... 96

10 D3.1 Design architecture Version 2.0, 30.01.2018

TABLE OF FIGURES

List of Figures

Figure 1: Relationship between different tasks ... 15

Figure 2: General ImmersiaTV architecture with all the components 28

Figure 3: General workflow for ImmersiaTV system .. 30

Figure 4: Architecture for ImmersiaTV system for Pilot 1... 30

Figure 5: Architecture of Capture component ... 31

Figure 6: Blackmagic Micro StudioCamera 4K .. 33

Figure 7: Details of capture and stitching workflow using VideoStitch Studio and Vahana VR .. 34

Figure 8: Schema of proposed editor workflow ... 35

Figure 9: Composition of the off-line production tools. ... 38

Figure 10: Connectivity of devices in home network ... 43

Figure 11: Software architecture of a player ... 44

Figure 12: Sample ImmersiaTV metadata file. ... 50

Figure 13: Logging module architecture and interactions .. 51

Figure 14: General architecture for Pilot 2 .. 55

Figure 15: Architecture of the capture modules for Pilot 2 .. 57

Figure 16: Orah 4i Camera .. 57

Figure 17: AZilPix Studio.One 360 camera rig (bottom left and middle) and semi-omnidirectional
camera with canon fish eye lens (top left). Stage box on the right. .. 60

Figure 18: AZilPix 360 camera centre front Dranouter music festival main stage (ICoSOLE EU
project, www.icosole.eu) .. 60

Figure 19: Example of semi-omnidirectional video. ... 61

Figure 20: Vahana VR software screenshot ... 62

Figure 21: Orah Stitching Box .. 63

Figure 22: Studio.One server in rack mount case with time code generator and audio interface
and robust connectors to stage box, cameras and control room. .. 65

Figure 23: Screen shot of the interface of the Studio.One software. Concerns a medical surgery
procedure video capture for training purposes. The session integrated 2 HD-SDI sources, a 360
rig and 4 semi-omnidirectional rigs - all real time on one server. (with dlive – eSurgie) 66

Figure 24: Equirectangular video produced simultaneously with previous. (In fact, a semi-
omnidirectional camera would have been better for this point of view, as the action is
concentrated in less than 170 degrees field of view.) .. 66

Figure 25: Sample user interface for Cinegy Live VR .. 67

Figure 26: Sample configuration interface for Cinegy Live VR .. 68

Figure 27: Architecture of Live Production Tools ... 68

Figure 28: Real-time video codec within the ImmersiaTV work flow 71

11 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 29: The re-mapping process for an input YUV image... 74

Figure 30: Pixel loss during remapping from equirectangular to cubic projection 74

Figure 31: Architecture of QoE component ... 76

Figure 32: General architecture for Pilot 3 .. 79

Figure 33 - Illustration of Exploration Mode concept for a whodunit scenario. 80

Figure 34: AZilPix Studio.One single-lens VR video capture solution, utilizing an extreme fish eye
lens covering 5/6th of the full sphere in a single (absolutely seamless) video. 82

Figure 35: single-lens VR video snapshots: note the total absence of any stitching issues such as
ghosting, allowing to have subjects much closer to the camera, and enabling considerably more
freedom in camera placement. ... 83

Figure 36. Refined encoder-deliver-decoder process chain ... 86

Figure 37. Encoder architecture diagram .. 87

Figure 38 Diagram of data sources for recreating HMD view on TV ... 89

Figure 39. New module for rendering ambisonic audio in media processing pipeline. 90

Figure 40. Architecture of extended synchronization .. 90

Figure 41: Sample ImmersiaTV metadata file. ... 93

Figure 42 QoE subsystem and interfaces ... 95

12 D3.1 Design architecture Version 2.0, 30.01.2018

List of tables

Table 1: Requirements from D2.3 – WP2 on Content Creation for Pilot 1 17

Table 2: Requirements from D2.3 – WP2 on Content Creation for Pilot 2 21

Table 3: Requirements from D2.3 – WP2 on Content Creation for Pilot 3 23

Table 4: Requirements from D2.3 – WP2 on Content Consumption for Pilot 1 24

Table 5: Requirements from WP2 on Content Consumption for Pilot 2 25

Table 6: Requirements from D2.3 – WP2 on Content Consumption for Pilot 3 27

Table 7: Portal video effect parameters .. 37

Table 8: Preview mode parameters... 37

Table 9: Off-line recording configuration... 40

Table 10: Accepted values for call back ... 49

Table 11: Metrics from logging module for QoE .. 53

Table 12: Specification of Orah Camera .. 58

Table 13: Specification of Vahana VR software .. 63

Table 14: Specification of Orah Stitching Box .. 64

Table 15: List of H.265/HEVC implementations on the market .. 73

Table 16: List of statistics required for QoE assessment .. 77

Table 17: Accepted values for call back ... 93

13 D3.1 Design architecture Version 2.0, 30.01.2018

LIST OF ACRONYMS

Acronym Description

HMD Head Mounted Display

DASH Dynamic Adaptive Streaming over HTTP

WP Work Package

MPD Media Presentation Description

AVC Advanced Video Coding

HEVC High Efficiency Video Coding

QoE Quality of Experience

14 D3.1 Design architecture Version 2.0, 30.01.2018

1. INTRODUCTION

1.1. Purpose of this document

This deliverable documents in detail the architecture design for omnidirectional content
creation, processing, transmitting and displaying in ImmersiaTV as investigated in “Task 3.1 –
Platform design and architecture”. The outcome of this task is a complete structured description
of all the different components, the global architecture with diagram and workflows that will be
implemented by all the tasks of WP3 (T3.2-T3.8).

1.2. Scope of this document

The objective of task T3.1 is to design an architecture for the overall ImmersiaTV system that
will form the basis for the implementation and integration of all the software and hardware
components. This document focuses on delivery of an architecture for both pilot 1 and pilot 2
and defines the full process chain of capturing, processing, encoding, content distribution up to
users’ display following the objectives of WP3, which consist of:

● To design a reliable and robust system architecture of the hardware and software

platform and facilitate a smooth integration of all the project technical components.

● To design, set up and deploy an omnidirectional camera system capable of capturing

off-line video (Pilot 1) and support live scenarios (Pilot 2).

● To design and implement a real-time process to effectively encode multiple images from

cameras into full omnidirectional video

● To design and implement the required functionalities to adapt the existing production

tools to omnidirectional inputs and cross-device visualization and interaction.

● To design and implement the servers required to distribute omnidirectional content

(incl. live stream) to remote users through existing and next generation access networks

efficiently

● To design and implement the clients and libraries required to display omnidirectional

video-based productions across devices (TV, second screen and HMD) maintaining

coherence, synchronization, and responsivity in LAN environments.

● To integrate and test the different components in an end-to-end pilot and validate it in

lab conditions.

● To document the overall process for other researchers and developers as well as

produce lab demonstrations.

● To extend functionalities and design of the system after gathering experience from Pilot

1 and Pilot 2 – towards Pilot 3

1.3. Status of this document

This is an updated version of previous D3.1 reports. The previous versions were published twice,
once described design of architecture for Pilot 1 and for the second time for Pilot 2. This version
extends the previous iterations towards Pilot 3. The document was also updated after Mid-Term
Review and addressed comments and questions raised by Reviewers.

15 D3.1 Design architecture Version 2.0, 30.01.2018

1.4. Relation with other ImmersiaTV activities

The relationship between this task and the other WP3 tasks and relevant WP2 and WP4 tasks is
shown below on Figure 1.

Figure 1: Relationship between different tasks

2. REQUIREMENTS ANALYSIS

2.1. Requirements on Content Creation

Deliverable 2.3 delivered in WP2 defines several structured requirements for content creation.
They are collected and summarized in Table 1 and Table 2.

2.1.1. Pilot 1

Requirement Comment

R-EDIT-1 The content creator can visualize the raw material
across the different end-user devices.

For pilot 2 There will be a stream preview player
based on Unity that will playback the RTSP
streams of the raw material before being
converted to MPEG-DASH to reduce latency.

R-EDIT-2 The content creator can use a standard edition
software (Adobe Premiere, Final Cut, or other), e.g. by using
predefined transitions, and avoid, for simple projects, using
advanced compositing software.

Off-line production tools will be designed and
implemented as Adobe plugin.

R-EDIT-3 In the editor software, the content creator can edit
content for TV and for omnidirectional video in such a way
that the timings of the content for the different targeted
devices are continuously visible

The editor will use a standard Adobe Premiere
workflow using plugins for omnidirectional video
and metadata generation.

R-EDIT-4 The content creator can use Windows and OS X. Off-line production tools will be available on
Windows and OS X.

R-EDIT-5 The content creator can make use of an advanced
mode in a compositing software (Nuke, Adobe After Effects)

Production tools plugin can be used in
combination with advanced functionalities of
Adobe Premiere

R-EDIT-6 The content creator can introduce interactivity within
the editor timeline through conditional transitions between
shots and scenes

Interactivity features such as enabling and
disabling portals may be created directly by using
the plugin

16 D3.1 Design architecture Version 2.0, 30.01.2018

R-EDIT-7 The content creator can select, within the editor
timeline, which video assets are visible within the TV, the
tablet and the HMD

Timelines are tagged for the particular output
device. Video assets may be assigned to such
particular timeline.

R-EDIT-8 The content creator can also create ImmersiaTV
scene typologies, i.e. interaction between devices, through
conditional transitions within the editor timeline

This will be available for pilot 3.

R-EDIT-9 In pilot 1, the end user will experience the content
with a common timing across devices (HMD, TV, tablet), it will
be continuous and have no time jumps

All videos are synchronized and have common
timings

R-EDIT-10 The content editor, using either a classic video
editor or an advanced one, will easily define transitions and
interactive transitions between omnidirectional videos using
black and white video matte

Adobe Premiere plugins implements transition
video filters corresponding with the shaders
implemented in the player (FadeIn, FadeOut,
Wipe, Slide, etc.)

R-EDIT-11 The content editor will be able to add a beauty layer
to the interactive transition. This beauty layer will unfold
synchronously with the video MATTE. It will be used to add
borders and eventually other visual content needed for the
transition

First the luma matte were implemented and
tested, but finally the implementation was
changed and the requirement was fulfilled by
solution based on shaders.

R-EDIT-12 The content creator will be able to see
omnidirectional content both in projected and non-projected
views by using Previsualisation tools integrated in the content
editor

Applied for off-line plugin

R-EDIT-13 The content creator will be able to pre-visualize
transitions and interactive transitions within the editing
software

Pre-visualisation of plugin effects is available in
standard Adobe Premiere preview

R-EDIT-14 The content creator will be able to pre-visualize
synchronized playout between different devices, for example,
to see how TV and HMD content fit in timing

Standard functionality of Adobe Premiere
supports this, as all the video assets are put on
common timeline and are synchronized.

R-EDIT-15 An export button will generate a set of videos and
metadata that is ready to distribute content across devices

Export button is available in auxiliary window
that contains advanced exporting parameters. It
generates all the videos and metadata in one
pass.

R-EDIT-16 The export functionality will accept sequences
involving different aspect ratios, due to differences in
omnidirectional and traditional video formats (most likely
solved through nested sequences).

Export functionality determines the resolution of
each output sequence and accepts various aspect
ratios.

R-EDIT-17 The common cutting points between devices will be
visualized putting the content for the different devices in two
sequences, one on top of the other

All sequences are in one common timeline

R-EDIT-18 It will be possible to define a label specifying the
destination for each sequence

All videos are tagged / labelled for different
devices

17 D3.1 Design architecture Version 2.0, 30.01.2018

R-EDIT-19 The outcome should be:

1) A set of videos in the highest resolution possible. The videos
should have a shared timestamp. This means that the
timestamp introduced at the frame level is common to all the
different video streams. For example, the first frame of a video
introduced exactly at second 12 of the broadcast should have
its first frame with a timestamp set at 00:00:12:00.

2) A metadata file detailing how the different videos have to
be organised to compose an omnidirectional scene. This file
should be compatible with broadband distribution standards

Output of the plugin contains a set of
synchronized videos with common timestamps
(1) and XML metadata file is compatible with
DASH Manifest - the Media Presentation
Description (2)

Table 1: Requirements from D2.3 – WP2 on Content Creation for Pilot 1

2.1.2. Pilot 2

Requirement Comment

R-CAP-1 Omnidirectional and directional cameras: Orah 4i,
GoPro rigs and EDM Studio.One cameras (both 360 rigs and up
to 8x 170 degree semi-omnidirectional high resolution
cameras). The directional cameras used for the cyclocross pilot
are Grass Valley LDK 8000 cameras (HD 1080i).

All mentioned cameras will be supported, but
served in different ways. While Orah 4i produces
RTMP stream, the EDM camera needs a special
Azilpix server that can also produce an RTSP
stream or provide stitched content over SDI.

R-CAP-2 Camera distances: to deal with a variety of distance
between cameras – from a few tens of meters (e.g. when filming
a music contest) up to 1 kilometre (cyclocross competition).
Fibre optics routing supported with adapter can cover the large
distances.

If the maximum length of cables is exceeded,
additional converters (into fibre) or amplifiers
will be used.

R-CAP-3 Synchronisation of camera streams: the various
streams resulting from different camera set-ups may have
different latencies, each omnidirectional system typically has its
own latency constraint. These streams need to be
resynchronised, this will happen in the Cinegy server (live
production tool)

Camera’s live streams will be re-synced by Cinegy
Transport with common timecode.

R-CAP-4 Cabling infrastructure:
● Power: Power generator and power cables
● Ethernet cables: for larger distances fibre optics

routing can be used with adapters
● Fibre sets: Connection cameras/capture server to

control car: nevion fibre sets with break-out boxes
(one in the field, one in the control car) carrying 4x
HD-SDI and 1x Ethernet. The Ethernet connection can
also be used to remotely control the Studio.One
cameras via RESTful APIs. Different Nevion fibre sets
can connect different cameras, such that cameras can
be sufficiently distributed.

● Triax cables: to connect the directive (TV) cameras
with the respective CCU’s in the control car.

An example cabling scheme is illustrated in
Figure 15.

18 D3.1 Design architecture Version 2.0, 30.01.2018

● BNC HD-SDI cables: HD-SDI cabling of up to 130m
from Studio.One semi-omnidirectional cameras to
their capture and processing server. (depending on
cable quality - here supposed Belden 1694A 1, with
thicker high quality HD-SDI cables, or multiple cables
per camera, larger distances can be covered)

R-STI-1 Stitching output formats: Be able to output
equirectangular real-time 4K 30 fps video streams, either
compressed (H.264/AVC RTMP) or uncompressed (provided by
EDM’s stitching server, or Orah’s Stitching Box HDMI out, or
Vahana VR output ports)

These are the minimum requirements for Pilot 2.

Cubic projection mappings, and H.264/AVC
(Phase2) / H.265/HEVC (Phase 3) encoding, will
be tested during the pilots.

R-STI-2 Vahana VR stitching: one Vahana VR instance per
GoPro/Elmo rig

If the stitched output is uncompressed and
provided on an HDMI or SDI port, the latency is
in the order of 2 video frames.

If the stitched output is compressed to an RTMP
network stream, the latency is below 1 second.

R-STI-3 Orah stitching: One Orah Stitching Box per Orah 4i
camera

If the stitched output is uncompressed and
provided on the Stitching Box HDMI port, the
latency is below 1 second.

If the stitched output is compressed to a network
RTMP stream, the latency is below 5 seconds.

R-STI-4 Studio.One stitching: the AZilPix Studio.One server
performs 360 stitching in real-time with UHD 30fps output
tested for live 360 streaming before. Camera to screen

latency is in the order of 2 to 3 frames.

Camera to screen latency is in the order of 2
frames (100 milliseconds).

R-PROD-1 Ingest: this describes the ingest side of the Live
Production block. The possible sources include streams from
omnidirectional cameras, streams from directive cameras, and
optionally video files.

● HD SDI signals to be converted to RTMP

● Compatibility with VahanaVR and Orah4i RTMP

streams

● RESTful API to control the Studio.One camera

● Configurable number of sources (RTP, RTMP, files)

● RTMP to RTP (Cinegy Live format) and RTSP (live

preview) rewrapping support

Vahana VR is used as an encoding server for the
uncompressed camera outputs to transform to

RTMP H.264/AVC. Cinegy Transport is used to
transform RTMP sources to other
representations (RTP/RTSP/etc.). Cinegy Live VR
will display the real-time preview for all the
source streams defined in the configuration.

Support for file sources and control of
Studio.One cameras via API is moved to the
Phase 3.

R-PROD-2 Synchronisation of streams (Cinegy Transport):
configurable service that lists the RTMP streams to be
processed and specifies the required delay. Cinegy Transport
can add a per-stream delay by rewriting the time stamp with a
common value, based on UTC added with a preconfigured
(measured) delay. Optionally the stream can also be physically

Cinegy Transport will only change the stream
representation (wrapper and reference
timecode), no advanced processing (like re-
encoding, scaling, etc.) is done – moved to Pilot 3
due to limited encoding configuration options in
Orah 4i. Pilot 2 uses re-encoding stage to

1 http://www.belden.com/techdatas/english/1694a.pdf

19 D3.1 Design architecture Version 2.0, 30.01.2018

delayed – i.e. re-broadcasted with defined delay to ensure
both logical (metadata) and physical (delivery) streams are in
sync.

conform to MPEG-DASH delivery specifications.
Cinegy Transport will also physically delay the
incoming stream according to the settings using
the RAM buffer.

R-PROD-3 Live content edition (Cinegy Live): the live
production operator workstation will have Cinegy Live VR
application running that is Windows OS-based and provides
the following functionality:

● Sources: display of all incoming streams

● Preset 360 scene composition: One or more

preconfigured 360 scene compositions (i.e. one or

more omnidirectional videos and directive shots with

interaction points) that are prepared beforehand

and are available as ImmersiaTV scene XML format.

This file initializes the live content delivery. The

format is defined in D3.1. The operator can at least:

○ define a set of graphical icons and portals

in the scene

○ select portions of omnidirectional and

directive video for use in portals

○ assign position, size, shape and user/world

reference of the insert

○ assign input streams to graphical icons

representing cameras

○ define user interaction patterns e.g. switch

from one scene composition to another

one, triggered by user input

● Scene changes: the director can define required

scene changes which activates an automatic scene

update action, e.g. removing a camera icon,

changing the actual source for a portal. An updated

ImmersiaTV scene XML is generated in real-time and

in sync with the media streams.

● Transitions: the director can activate a transition

between omnidirectional and/or directive streams. A

set of quick access scene transitions is available.

Transitions typically apply for the director’s view

mode, but can also relate to the entry view of the

user exploration mode.

● Live Preview: the director can locally preview scene

modifications in real-time (or sufficiently low

latency).

● Content for second screen (tablet): the director can

preconfigure and change the second screen

experience, e.g. a mosaic consisting of a number of

camera viewpoints that can be activated

The focus for Pilot 2 is on sync delivery of
director’s view representation while advanced
features (like user interactivity in exploration
mode) are moved to Phase 3.

Limited user exploration features with director’s
choice override are presented in Pilot 2.

Cinegy Live VR will provide operator with real-
time preview of the source streams, list of
available portals configurations (including
position, shape, reference, etc.) and possible
transitions between sources.

Cinegy Live VR operator will be able to reassign
the source for the scene and/or portals,
add/remove portals from the scene, and initiate
complete scene change.

Low latency preview using optional local
ImmersiaTV player instance is moved to Pilot 3
due to stability issues found with RTSP
streaming.

R-PROD-5 Distribution: collection and packaging of all streams
and metadata to send towards MPEG-DASH streaming server
that

● accepts RTMP streams as live sources

Cinegy Transport generates final MPEG-DASH
versions of the stream ready to be consumed by
external players.

20 D3.1 Design architecture Version 2.0, 30.01.2018

● supports MPEG-DASH events mechanism

● allows scene profile modifications and scene updates

● (optionally) performs external encoding to package

the incoming streams as segmented MP4 files.

However this packaging can be performed by Cinegy

Transport in the final version.

The scene description file in ImmersiaTV XML
format will be published on the same machine
and be available for reference. The file will be
updated with the changes made by the Cinegy
Live VR operator. Scene changes will be aligned
to the timecode provided by Cinegy Transport.
Scene will reference MPEG-DASH versions of the
streams for the global Internet based
consumption.

R-ENC-1 Upstream external requirements for H.264/AVC-
based solution: fully integrated with VahanaVR platform,

requirements are those specified within VahanaVR

This feature is, as stated in the requirement, fully
integrated with VahanaVR platform.

R-ENC-2 Downstream external requirements:

determined by capabilities of reception device

Supported codec: H.264/AVC

Codec parameters: bit rate, frame rate, frame
size, chroma sub-sampling

Supported projections: Cubic 2x3 rotated

Codec parameters to be adopted to those
supported by the play-out device and
rendering system.

Rotated cube projection to be supported in
Pilot 2

R-ENC-3 Encoding design requirements

Real-time hardware (GPU: NV NVIDIA GeForce GTX
1080 or similar) supporting encoding of single video
stream

Ubuntu Linux Operating System

YUV-based encoder input

Input interface: HDMI or SDI card allowing for real-
time acquisition and buffering

Output interface: RTMP over Ethernet

Per encoding session configuration

Related to H.265/HEVC real-time encoding. Will
be designed for Phase 3

R-DIST-1 Live Preview (operator): different RTSP streams
needs to be provided to preview contents in ImmersiaTV
preview player.

Cinegy Transport will optionally generate RTSP
versions of the streams to be referenced by the
local preview. Cinegy Live VR will optionally
generate alternative version of the Scene
description file that references local low latency
RTSP versions for the preview. Functionality
moved to Pilot 3, local preview is implemented
via Live VR interface with live preview of all
incoming streams.

R-DIST-2 MPEG-DASH streams: live streams should be
available on a server with metadata signalizing the different
contents to show at specific times.

Cinegy Transport is responsible for providing
MPEG-DASH representation of the streams while
Live VR is responsible for providing the scene
XML description.

21 D3.1 Design architecture Version 2.0, 30.01.2018

R-DIST-3 Metadata updates: the metadata XML file should be
accessible on the same server with the media content. The
files are pointed by a relative path to itself. The metadata XML
file will be refreshed in a timely manner in order to be
consumed by the ImmersiaTV player such that the changes are
reflected in the xml before they happen. This means that the
metadata refresh interval should be less than the delay
introduced by the distribution pipeline.

Cinegy Live VR will create and update Scene
description file with new events based on the
common timecode provided to all streams by
Cinegy Transport.

R-DIST-4 Synchronisation: Input streams should be
synchronized beforehand in the live production tooling, in
origin to avoid desynchronization and problems in playback
associated to bad alignment and poor streaming experience.

Synchronization will be handled by Cinegy Live
VR

Table 2: Requirements from D2.3 – WP2 on Content Creation for Pilot 2

2.1.3. Pilot 3

Requirement Comment

R-CAP-5 Capturing format: at least 4K 360° video in
equirectangular format, at 25fps or higher.

Both Orah 4i and AZilPix Studio.One cameras
support this format.

R-CAP-6 Timestamping: timestamping for synchronisation
with other cameras and audio.

AZilPix Studio.One outputs SMPTE LTC time
codes, either provided externally, or generated
internally.

R-CAP-7 Remote operation: remote operation of camera
shading, recordings, streaming.

Both Orah and AzilPix Studio.One camera
support remote operations

R-CAP-8 Ambisonic audio capturing: regarding audio, use the
ambisonic capabilities of the Orah camera, mixed with Lavalier
microphones in each actor/performer.

Ambisonic audio mixing software will be used.

R-CAP-9 Non-intrusive camera rig: keep the camera rig as little
intrusive as possible, so both the directive cameras and 360°
rig can have the most flexible space to work in.

Camera rigs will be optimized for specific
requirements of production site.

R-PROD-6 Individual scene configuration: placement of
portals individually for each omnidirectional camera.

Changes in interface will allow grouping portals
with omnidirectional views.

R-PROD-7 Recording of replays: recording highlights and
dynamically adding them to the list.

Live production tools will support recording of all
streams. Most interesting parts can be marked
by the operator.

R-PROD-8 Publishing of replays: publishing a list of additional
offline content - replays, pre-recorded content.

The list of additional content can be defined and
updated during the production.

R-PROD-9 Generation of ambisonic sound Live production tools will have an option to
output ambisonic sound.

22 D3.1 Design architecture Version 2.0, 30.01.2018

R-ENC-4 Encoder Upstream external requirements for HEVC-
based solution: fully integrated with VahanaVR platform,
requirements are those specified within VahanaVR

This feature is, as stated in the requirement, fully
integrated with VahanaVR platform.

R-ENC-5 Encoder Downstream external requirements:
determined by capabilities of reception device

Supported codec: H.265/HEVC

Supported projections: Equirectangular and Cubic 2x3 rotated

Codec parameters to be adopted to those
supported by the play-out device and rendering
system.

Projections are supported since Pilot 2.

R-ENC-6 Encoding design requirements: similar as for live pilot
2

Encoder will follow required design.

R-ENC-7 Compression requirements: the encoder is to
compress 4k omnidirectional video at up to 30 frames per
second

Encoder setup will be optimized to reach these
requirements.

R-ENC-8 Decoder requirements: the decoder is to decompress
4k omnidirectional video at up to 30 frames per second

Generated stream will be optimized to allow
decoders reach these requirements.

R-ENC-9 Objective QoE metric: the encoder takes as an input
an objective QoE metric from the QoE module

Interface for accepting QoE metrics will be
established.

R-ENC-10 QoE Visual attention info: the encoder takes as an
input from the QoE module visual attention information

Interface for accepting visual attention info will
be established.

R-ENC-11 QoE adjusted Encoding parameters: the encoder
uses the objective QoE metric to adjust the encoding
parameters

Adequate module will be included in encoding
component.

R-ENC-12 QoE adaptive pre-filtering: the encoder uses visual
attention information to apply adaptive pre-filtering

Adequate module will be included in encoding
component.

R-QoE-6 Communication channel between QoE and DASH
server: to acquire HEVC bitstreams and store them for
decoding.

Dedicated interface between QoE and DASH
server will be used.

R-DIST-5 Social networks binding: In order to publish stored
movement around the 360° scene on social media portals (e.g.
Facebook)

Server will support sharing content in social
networks.

R-DIST-6 Ambisonic audio packaging and distribution in a
compatible MPEG-DASH format

Ambisonic audio will be included in distribution
system.

R-DIST-7 H.265/HEVC MPEG-DASH for native player media
consumption

H.265/HEVC streams will be available.

R-DIST-8 H.264/AVC and H.265/HEVC mixed MPEG-DASH
distribution

H.264/AVC and H.265/HEVC streams will be
available in parallel.

R-DIST-9 Automatic conversion from equirectangular to
cubemap representation

The projection of content will be optimized for
delivery.

23 D3.1 Design architecture Version 2.0, 30.01.2018

R-EDIT-20 Selecting Exploration Mode for the project settings It will be possible to define functionalities
needed for Exploration Mode.

R-EDIT-21 Creating user action for going from exploration
mode to the next scene

Exploration mode can be ended on user action.

R-EDIT-22 Adding unsynchronized content (to be started on
user action)

Some content can be played on user actions
without synchronization to other devices.

R-EDIT-23 Defining interactions between devices: an event on
one device triggers an action on another

It will be possible to define conditional actions,
depending on event from other devices

R-EDIT-24 Defining user events that need to be stored for
actions in following scenes

Conditional action can be based on earlier
events.

R-EDIT-25 Designing a customized tablet view (e.g. list of
objects found)

It will be possible to define custom layout of
presented media.

Table 3: Requirements from D2.3 – WP2 on Content Creation for Pilot 3

2.2. Requirements on Content Consumption

Deliverable 2.3 delivered in WP2 defines several structured requirements for content
consumption. They are collected and summarized in Table 3 and Table 4.

2.2.1. Pilot 1

Requirement Comment

R-PLAY-1 Basic controls. The basic controls of the player will
be:

Select media source: which is likely to be a list of available
content, located in public servers.

Play: Starts to process the selected source.

Stop: Stops the current reproduction and allows you to select
a content once again.

Select tablet or HMD mode: switch from tablet to HMD
behaviour and rendering

Client application provides basic functionality of
selecting the source, controlling the stream and
selecting output device

R-PLAY-2 Metadata to describe and define the scene: The
scene composition information has to be distributed to the
player. This includes information like which videos are visible
and where they placed or how video scenes are composed.
This metadata may be transmitted in a multiplex or signalled
within the stream itself, or it might be transmitted using a
parallel communication channel

Metadata XML is generated by production tools
and are sent to the client by the distribution
server. XML metadata describes the scene, visual
parameters as well as portal location and
transitions.

R-PLAY-3 The scene is device dependent. Each type of device
will have to render a different scene, as the interaction with
the user will be different. This implies there is a scene
description for each type of device

Production tools create independent streams for
various types of devices (TV, tablet, HMD). Scene
description is provided for each type of device.

24 D3.1 Design architecture Version 2.0, 30.01.2018

R-PLAY-4 Render multimedia content over textures and 3D
objects. One or several videos will be displayed in different
positions over the 3D scene (over a spherical surface, as a
regular 360° video, or over plain surface in a portal-alike
effect).

Client uses Unity 3D engine and the multimedia
content is rendered in 3D space.

R-PLAY-5 Apply video masks in videos. A mask is needed to
overlay more than one video over the same texture forming an
overlay of an arbitrary shape (i.e. to render a portal as a circle
over the 360° sphere)

Will be delivered in Pilot 3

R-PLAY-6 Interaction management. The player needs to be
able to process a systematic way to define interaction
mechanisms in the end-user devices, and the methods
implementing such interaction mechanisms need to be made
available to the content creator

The interactivity is implemented as on click
actions for tablet and smartphone devices and
staring at a point for HMD.

R-PLAY-7 Achieve a frame level precise synchronisation: This is
relevant as devices can display different omnidirectional and
directional contents that were shot together, so any sort of
desynchronization is going to be noticeable by the user

Client application guarantees synchronisation
between devices. It is done by Session Manager
and DVB-CSS clock synchronisation mechanisms.

R-PLAY-8 The devices may need to synchronize to any base
media time at start up: A device can be turned on when there
is already the reproduction going on in another device, so the
one joining the group must get synchronized without affecting
the other ongoing playbacks

Running a new instance of the client forces the
stream synchronisation to the playback of central
device (usually a TV)

R-PLAY-9 Basic audio control in the end-user devices The audio is only available for TV device in pilot 1.

R-PLAY-10 Real time communication channel between devices:
sending messages from one device to another

Will be delivered in Pilot 3

R-PLAY-11 Second screen scene definition: The definition of
the second screen view (mosaic layout) in the tablet must be
defined within the content production process.

The screen view in the tablet is defined in the
post production tool.

R-PLAY-12 The end-user can capture screen casts and share
them with other devices

Will be delivered in Pilot 3

R-PLAY-13 The end-user can capture screen casts and share
them through social media

Will be delivered in Pilot 3

Table 4: Requirements from D2.3 – WP2 on Content Consumption for Pilot 1

2.2.2. Pilot 2

Requirement Comment

R-REC-1 Master device: TV should be a master device for
synchronization in LAN.

Device playing TV stream will be the device
which distributes the synchronization signal.

25 D3.1 Design architecture Version 2.0, 30.01.2018

R-REC-2 Adaptive streaming: the ImmersiaTV player should
adaptively select stream resolution and bitrate provided by the
MPEG-DASH server, taking into account the hardware
capabilities of playout device and available network
bandwidth.

The player will be aware of the device and
network capabilities and act in consequence.

R-REC-3 Refresh: Player should refresh scene layout (XML
metadata refreshing), taking into account changes on the
server side.

The player will refresh the metadata XML and
apply the changes to the scene.

R-REC-4 Transition implementation: Player should implement
a list of possible transitions for opening and closing of portals
or graphical icons

The player will implement the same transitions
that were available for pilot 1.

R-QoE-1 Logging information: the QoE module requires a
number of logging information as input to evaluate quality (a
list of QoE parameters has to be provided).

Events occurring in the application will be logged,
allowing to extract necessary information.

R-QoE-2 Server implementation: the QoE module will be
implemented on a server. This can be the same server as
where the Encoder is running or a separate server close to the
Encoder.

The implementation of the QoE module will be
independent from other modules, ensuring
compatibility with interfaces for input and output
data.

R-QoE-3 Timing signals: at the client side, access to timing
signals (timestamps, net clock data) is required (before and
after delay) to extract start and length of the delay (stalling).

Logging of events will include time related
information.

R-QoE-4 Side channel: a side channel between clients and the
server is required to deliver necessary data (e.g. delay data) for
QoE optimisation

Client will send updates of logged set of
parameters to a server in XML files.

R-QoE-5 Feedback communication: a communication channel
between QoE and Encoder is required to send QoE feedback
for steering encoding parameters.

Feedback channel and steering parameters will
be defined in pilot 3, after analysing outcomes of
pilot 2.

Table 5: Requirements from WP2 on Content Consumption for Pilot 2

2.2.3. Pilot 3

Requirement Comment

R-REC-5 Displaying list of additional offline content The player will list additional media provided

26 D3.1 Design architecture Version 2.0, 30.01.2018

with the main content.

R-REC-6 Mixing live and offline content Pre-recorded content can be played along with
live streams.

R-REC-7 Pausing, resuming, synchronizing to live Basic controls will be available for live streams.

R-REC-8 Notifying about new additional content available. The player will be able to display notifications.

R-REC-9 Highlighting of interesting viewpoints recommended
by director

User will be notified about director
recommendations

R-REC-10 Storing path of user head movement in order to
publish on social media

HMD player will be able to save and stream
looking direction.

R-REC-11 Support for hotspots with tooltips distribution: a new
kind of interactivity based on portals with additional
information based on actual camera locations

Hotspots will define interactive areas in the
scene.

R-REC-12 Enabling Exploration Mode on the client The player will support functionalities defined for
Exploration Mode.

R-REC-13 Different devices can display different non-
synchronized content

Specific user actions will allow starting another
videos regardless of synchronization to other
devices.

R-REC-14 TV displays VR view from HMD New mode for recreating HMD view on TV will be
added.

R-REC-15 Sharing the path of head movement of a user: VR
view on television (screen cast).

HMD will be able to stream metadata describing
current scene, allowing to recreate it on TV.

R-REC-16 HMD may display: Video or Static image (e.g. map) Functionality available since Pilot1

R-REC-17 All HMD displays should be synchronized in time Functionality available since Pilot1

R-REC-18 Support for video looping on all devices The player will be able to loop videos

R-REC-19 Tablet in Exploration mode enables to show
additional information. This view may contain the list of
objects, their textual descriptions or photos.

Tablet application will allow custom layout of
presented media.

R-REC-20 HMD content is limited in time, then user is moving
to another scene

Finishing exploration mode will start the next
scene.

R-REC-21 Client extends interactivity between devices User actions on a device will enable events on
another devices.

R-REC-22 Functionality of pausing and resuming of the content The player will have controls for pausing content.

R-REC-23 Functionality of jumping to another scene basing on It will be possible to finish exploration mode on

27 D3.1 Design architecture Version 2.0, 30.01.2018

users actions user action.

R-REC-24 Highlighting areas where objects are located in the
scene (HMD)

It will be possible to define hotspots for
interaction.

R-REC-25 Selecting objects from the scene in HMD to be
displayed on tablet.

User interaction on HMD will enable events on
tablet.

R-REC-26 Supporting ambisonic sound The player will be able to play ambisonic audio

R-REC-27 Synchronization across devices based on audio New synchronization method will be added.

Table 6: Requirements from D2.3 – WP2 on Content Consumption for Pilot 3

2.1. Requirements on Pilot execution – WP4

WP4 Demonstration Pilots defines requirements on logging functionality needed for QoE
process and Pilots evaluation. Logging functionality was taken into consideration and is defined
in Section 4.6.4.5. Quality of Experience for Phase 1 is described in Chapter 4.7 and extended for
Phase 2 in Chapter 5.7.

3. GENERAL WORKFLOW AND PLATFORM OVERVIEW

3.1. ImmersiaTV platform

ImmersiaTV aims to distribute omnidirectional and directive audiovisual content simultaneously
to head mounted displays (HMD), companion screens and the traditional TV.

The content distributed is constituted of one or more omnidirectional videos, complemented
with several directive shots, and metadata detailing how to merge these streams in an
immersive display, as well as how to select portions of the omnidirectional stream for traditional
TVs and tablets.

All the components of the system with mutual relationships are depicted on Figure 2 and shortly
introduced in next sections.

28 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 2: General ImmersiaTV architecture with all the components

3.1.1. Capture

This block is responsible for the physical capture of several video streams coming from 360
omnidirectional camera systems as well as other sources such as high resolution directive
cameras, video clips, textual information and other metadata required for generating
omnidirectional video enriched with audiovisual and auxiliary information in further stages.

3.1.2. Stitching

This block is responsible for grabbing and processing video images from 360 omnidirectional
camera systems (constructed using multiple physical cameras). The main task of this block is to
combine several video streams into one omnidirectional video stream (stitching process).
Omnidirectional video from Capture component is the input for the Stitching module and other
auxiliary data and video clips are used by production tools. While in Pilot 1 video files are
recorded off-line and delivered to Off-line production tools (red dashed arrow), in the live
scenario of Pilot 2, live streams are provided to Live Production Tools (black arrow).

3.1.3. Encoding

This block implements the video codec used by other modules of the ImmersiaTV system such
as Capture and Stitching and Production Tools. For Pilot 1 standard encoders will be used,
however encoding stream parameters needs to be defined between components. For Pilot 2 the
Encoding block is executed between Stitching and Production Tools, as the second one will
process already encoded streams.

3.1.4. Off-Line production

This block encompasses a set of tools and plugins for offline video editing with functionality of
synchronization and combining multiple 2D and omnidirectional video sources and auxiliary data
together. These data come from Capture and Stitching blocks. Off-line production tools operate
on video files from omnidirectional and directional cameras and allows the editor to select,
modify and combine streams using various transition effects and produce metadata. Off-line

29 D3.1 Design architecture Version 2.0, 30.01.2018

production tools produce video files as well as XML metadata that needs to be uploaded to
Content Distribution server.

3.1.5. Live production

This block consists of a set of tools and plugins for live video editing with functionality of
synchronization and combining multiple 2D and omnidirectional video sources and auxiliary data
together. These data come from Capture and Stitching blocks by Encoding block. Live production
tools operate on already encoded and optimized video streams from various types of cameras
(directional and omnidirectional) and allows the editor to select, modify and combine streams
using various transition effects in real time.

Live production tools produce target-specific representations of H.264/AVC or H.265/HEVC
encoded video streams together coming together with XML metadata that both are passed to
the Content Distribution server. All effects and transitions are described in metadata, so it is
important this metadata is refreshed after each modification applied by Editor.

3.1.6. Distribution

This block handles the communication between off-line encoded contents or live streams and
the end-user’s player. It encapsulates selected video streams into network protocols and
provides synchronized video and auxiliary streams to the player. Content Distribution server
enables to select streams and handles the adaptation of resolution, codec, etc. in negotiation
process with the client (Reception and interaction).

3.1.7. Reception and interaction

This block handles the end-user’s reception side and display. It takes care of selecting proper
video streams, receiving, decoding and displaying them. It also handles the synchronization of
multiple received streams in order to present them to the end-user. The user can interact with
the received content by selecting streams, choosing the device and performing basic playback
actions. The client application provides logging functionality of playback parameters that can be
analysed off-line.

3.1.8. Quality of Experience

This module assesses the quality of content produced by the ImmersiaTV system by means of
subjective and objective metrics and gives the feedback and recommendations of changes to
the Capture and Stitching, Encoding and Reception modules. For Pilot 1 and 2 subjective metrics
are used as well as taking advantage from logs generated by client application some QoE
algorithms can be applied in order to assess and test the quality. In Pilot 3, real-time assessment
of the quality will be introduced. These algorithms working real-time in the background will
enable giving particular feedback to the encoder, which is able to adapt the quality, bitrate and
resolution to current needs or limitations.

3.2. Workflow

The general workflow of the ImmersiaTV system covers all areas of production, distribution and
reception of the omnidirectional video. The workflow is depicted on Figure 3.

30 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 3: General workflow for ImmersiaTV system

Physical captured streams are processed by the Capture component and then passed to
advanced stitching algorithms (Stitching). Then omnidirectional video files or streams are
encoded and can be modified and edited using Production Tools. The result of this are encoded
videos with additional description metadata which are passed to the Distribution component
which communicates with the client application and sends video streams through the network
(Reception). The decoded images can be input for QoE and Logging modules for further analysis
and quality assessment. This generic workflow of the system applies to both: off-line (Pilot 1 &
3) and live (Pilot 2 & 3) scenarios.

The workflow covers also external Synchronization mechanisms and feedback from QoE to the
Encoder which will be implemented during last Phase of the project and were described in
Chapter 6.

4. PHASE 1 PLATFORM AND ARCHITECTURE

4.1. Architecture Overview

The development plan in Phase 1 focuses on the implementation of the tools and modules
required to demonstrate Pilot 1. In this offline scenario omnidirectional and directive streams
will be captured, processed and aligned by the editor using Adobe Premiere Pro Plugin in order
to prepare multi-platform omnidirectional views containing embedded two-dimensional video
streams. Parts of the omnidirectional scene captured by several cameras will be processed and
stitched together using VideoStitch Studio. Other stitching software may be also used in order
to meet specific requirements of the editor.

As a result of the offline production action, several H.264/AVC video files with MP4 format
wrapper and one metadata file will be generated, transferred to the DASH server, transcoded,
and served in MPEG-DASH streamable format to be consumed by the end user’s devices. Stream
for the TV device can have audio multiplexed, however it is out of the main focus of the project.
The user will need to run a dedicated player in order to display omnidirectional content on their
HMD and/or tablet device as well as a directive view on a TV set. All components required to
achieve the goals of Pilot 1 are depicted in Figure 4.

Figure 4: Architecture for ImmersiaTV system for Pilot 1

31 D3.1 Design architecture Version 2.0, 30.01.2018

In the Pilot 1 workflow, directional and omnidirectional videos are passed between components
as video files (red dashed arrows). Off-line production tools eases the process of editing and
combining multiple video files into one and produces output video in various resolutions and
versions for different devices together with description metadata. Videos and XML metadata
files are finally passed to the distribution chain (MPEG-DASH server).

4.2. Capture and Stitching

4.2.1. Description

For capturing and stitching off-line visual content the ImmersiaTV system will use existing 360°
camera rigs that are available on the market, such as GoPro and Elmo rigs.

For Pilot 1 we will rely on hardware available on the market in order to test all other components
of the workflow:

● Using off-the-shelf and professional cameras in conjunction with VideoStitch

commercial products (VideoStitch Studio and VahanaVR), that will be adapted to

answer the constraints and requirements of broadcast-quality omnidirectional

production workflows; VideoStitch Studio is dedicated to offline post-production,

importing video files, stitching them together, and producing a 360° video file, while

VahanaVR stitches live video streams. These solutions will be deployed in pilot 1 (offline

production). Although more oriented towards live productions, VahanaVR will be also

tested in pilot 1, allowing the directors to have a live preview and direct feedback of the

content during the shooting.

● Using off-the-shelf high resolution professional traditional cameras for creating

directional content in 4K.

4.2.2. Architecture

There will be several camera systems tested and used in order to achieve the different goals of
Pilots 1, 2 and 3. For Pilot 1 and off-line content capturing the GoPro3 and Elmo QBIC rigs will
be deployed. They will store several video streams on SD cards, and this content will be used in
VideoStitch Studio which will do the stitching processing. Then the omnidirectional content will
be available in off-line processing tools.

Figure 5: Architecture of Capture component

32 D3.1 Design architecture Version 2.0, 30.01.2018

4.2.2.1. Omnidirectional camera systems

The most important parameters of the described camera systems with output capabilities are
described as follows:

● GoPro Hero 3 Black camera rigs (3 or more sensors)2. The H3PRO6 rig enables to

combine 6 GoPro Hero 3 Black cameras together for capturing omnidirectional video

streams. Each piece of the camera has 12MPix CMOS sensor and produces H.264/AVC

encoded stream or provides HDMI live output. The cameras support storing on

microSD/microSDHC cards in resolution up to 4K, although the frame rate in UHD

resolutions is rather poor (12 or 15 fps). Each camera handles Full HD resolution in 60

fps (recording) or 30 fps (HDMI output)

Camera Rig Number of
sensors

Output resolution How it is used

H3PRO6 Rig with 6 GoPro 3 Black
cameras

6 6x 1920x1080p/60 fps when recording
on SD card

6x 1920x1080p/30 fps on HDMI output

Outputs video files on SD
cards for VideoStitch Studio,
or HDMI video for Vahana

● Elmo QBIC rigs (4 sensors)3. QBiC Panorama X camera rig enables to combine 4 QBiC

cameras for capturing omnidirectional video streams. Camera is equipped with CMOS

sensor and supports resolution up to Full HD in 60p (recording) or 30 fps (HDMI output).

The camera has WiFi output.

Camera Rig Number of
sensors

Output resolution How it is used

Elmo QBIC

4 4x 1920x1080p/60 fps when recording
on SD card

4x 1920x1080p/30 fps on HDMI output

Outputs video files on SD
cards for VideoStitch Studio,
or HDMI video for Vahana

2 http://www.cnet.com/products/gopro-hero3/specs/
3 http://www.video-stitch.com/360-camera-rigs-elmo/

33 D3.1 Design architecture Version 2.0, 30.01.2018

4.2.2.2. Off-line stitching system

For the stitching process, the “VideoStitch Studio” and “Autopano” software products will be
used.

VideoStitch Studio for off-line stitching and production accepts input video files from cameras
encoded with H.264/AVC, Baseline/Main/High profiles, 8 bits, progressive format, or Apple
ProRes 10 bits (progressive). It can produce output stream encoded in MPEG4/AVC/Apple
ProRes 10 bits or TIFF/JPEG/PNG image sequences. The requirements for VideoStitch Studio are:
Windows 7 or later, 64 bits, Linux Ubuntu 12.04.4 64 bits, Mac OSX 10.9 or later. Regardless of
the OS, an nVidia graphics card with 4GB of GPU memory is needed.

For the production of omnidirectional movie by Lightbox and regarding compatibility with
existing workflow, AutoPano Video can be also used. Lightbox uses full Mac environment
workflow with no hardware support for VideoStitch. Both products VideoStitch Studio and
AutoPano will be tested and used for production purposes.

The workflow for AutoPano is quite simple. It recognises the camera rig automatically and all
parameters are determined based on imported footage, including the number of cameras and
the angle of the lens, however for fine tuning of all stitching videos, some control points must
be introduced (marking the same point in different cameras).

4.2.2.3. Directional cameras

As directional cameras, the production team may use Blackmagic Micro Studio Camera 4K. For
the traditional footage these cameras were selected because there was a limitation on camera
size. It is important to choose the smallest cameras with great detail. Blackmagic Micro Studio
Camera 4K cameras have small footprint, high definition (4K), remote control (all parameters
and configuration can be remotely change). Cameras use Micro Four Thirds Lens Mount, so it is
easy to use a wide range of lens, already available in Lightbox. The size of cameras is also
important to hide directional cameras from omnidirectional movie. Small 4K cameras can be
mounted in the 360 rig.

Figure 6: Blackmagic Micro StudioCamera 4K

Blackmagic Micro Studio Camera 4K supports resolutions up to 3840x2160 (UHD) up to 30 fps.
In lower resolutions - 1080p supports wide range of frame rate up to 60 fps. The camera has
focus control and iris control and can be used for both off-line recording and live streaming
(SDI or HDMI output).

4.2.3. Workflow

The input and output formats are closely related to the cameras selected for content recording
on the one hand, and VideoStitch software capabilities on the other hand.

34 D3.1 Design architecture Version 2.0, 30.01.2018

The overall functionality consists of stitching various off-line input video sources. VideoStitch
Studio uses following workflow:

● read the input sources coming from the multiple cameras on the 360° camera rig

● temporally synchronize them (VideoStitch Studio only, Vahana VR assumes the frames

on its physical or network input ports are already synchronized)

● calibrate the camera rig geometry through self-calibration of intrinsics (camera focal

lengths and distortion parameters) and extrinsics (camera position and orientation)

parameters, but an offline calibration template can be imported)

● calibrate the camera rig photometry (to make up for various exposures, colour

temperatures if the cameras are not properly controlled, and for lens vignetting)

● map each camera view onto a 360° equirectangular frame

● adjust the equirectangular frame orientation for horizon levelling (making sure the

scene horizon maps to an horizontal line in the stitched output)

● export the stitched content. In Studio, it can take the form of individual picture files, or

a compressed video stream. In Vahana VR, the output format can be a compressed video

file stored on disk, or and uncompressed output on an HDMI or SDI port, or a

compressed RTMP stream which can be sent to a video server.

The workflow described above is depicted on Figure 7.

Figure 7: Details of capture and stitching workflow using VideoStitch Studio and Vahana VR

Only progressive video is supported by the stitching software, interlaced video cannot be
stitched correctly without a deinterlacer.

Resolution is only limited by the computing power of the stitching device and available input
cards.

4.3. Off-line production Tools

4.3.1. Description

Video editing in general is a complex process with many stages. In the project we extend typical
media creation by adding new technical possibilities, however they also impose some
restrictions for the content creation process.

The aim of this part of the project is to propose a workflow, elaborate techniques in existing and
create missing tools that will allow users to create, in an easy and intuitive way, a wide variety
of content suitable for the ImmersiaTV player.

The architecture of a set of tools for content creation is based on three elements:

35 D3.1 Design architecture Version 2.0, 30.01.2018

● software requirements from the user scenarios (defined in Deliverable 2.3),

● output format and player capabilities (defined in 4.6 Reception, Interaction and Display),

● evolution of environmental capabilities.

While the first one defines requirements, the two others impose mostly limitations that have to
be taken into account.

The proposed workflow should not differ much from the typical process of video editing. Editors
should be able to follow their standard routine supplemented with just a few easy additional
steps and having in mind that sequences for three synchronized output destinations have to be
prepared. All of the required additional functionality will be implemented and added to Adobe
Premiere Pro as a set of plugins.

There are three main stages added to the standard editing workflow, as depicted in Figure 6:

● synchronization of media for different output destinations

● defining portals/transitions/interactive points

● export to different output formats

By adding three stages (depicted as yellow blocks) to the typical content edition workflow (dark
blue), separate processes for each device (TV, tablet, HMD) are merged into one bigger process.

Figure 8: Schema of proposed editor workflow

4.3.2. Software architecture

4.3.2.1. Synchronization

The first challenge is assembly and editing of content for three devices in one project. It is up to
editors, if they create them in parallel or one by one, but the objectives of the project put strict
requirements for the synchronization of output media. To achieve this goal, at this point of the
workflow editors have to follow basic rules allowing to use the ImmersiaTV plugin. In particular,
clips for all types of devices should be edited together in a common sequence space, however
on separate video tracks (layers). Each track will have to be labelled, indicating which device is
the target. Tracks can be shared by more devices, if the same clips are intended for them.

36 D3.1 Design architecture Version 2.0, 30.01.2018

This approach from editor perspective makes assembly, synchronization and editing of content
for three devices similar to preparing picture-in-picture content for a single device. Generation
of three separate contents will be done automatically in the export stage.

After tests editors may ask for additional tools to support labelling and managing tracks or
enhancing preview capabilities, but these will be optional improvements, which will not
influence general architecture.

4.3.2.2. Portal video effect

Portals are overlays (video or graphical) in omnidirectional content potentially with interactive
options. In our approach inside of a portal there will be a separate video stream and the player
will blend them dynamically. It can be used as a (conditional) transition, when the appearing
portal covers the whole sphere.

To allow editors to create ImmersiaTV project with portals, there should be a Portal video effect
implemented. It should be applied to the video clip that will be visible in the portal. It should
describe portal parameters and visualize them in a preview. We assume that background space
is omnidirectional with equirectangular projection. During the export portals parameters will be
used to generate proper video files and metadata.

This part of the plugin will be created with After Effects CC 2015 Plug-in SDK (C++)4.

Portal parameters should be possible to be modified from standard Effects Control panel and on
a preview. Table 7 lists all parameters of the Portal video effect.

Parameters Control
type

Animatable
(Variable)

Details

Projection list no none - Directive shots
equirectangular - Omnidirectional shots

Shape implicit no rectangle - Directive shots
spherical cap - Omnidirectional shots

Reference list no world/user

Longitude 360°
(-180°-180°)

yes position of a centre of a portal relative to ‘Reference’

Latitude 180°
(-90° - 90°)

yes position of a centre of a portal relative to ‘Reference’

Distance implicit no Track number defines order of portals

Size slider /
implicit

yes Directive shots - scales width of video to a defined size
(keeping aspect ratio). 1.0 -> width of a background sphere
Omnidirectional shots - always 1.0 -> 360°

Luma matte layer list no Layer defining transparency of a portal video (NOT related
to the transition)

Transition:

 Visible checkbox yes Possibility to switch on/off portal at keyframes.

4 http://www.adobe.com/devnet/aftereffects/sdk/cc2015.html

37 D3.1 Design architecture Version 2.0, 30.01.2018

Transition luma
matte

layer list no Layer defining portal opening/closing transition

Additional action list yes Action at a keyframe (currently only vibration)

Interactivity:

condition on
appearance

list no List of callbacks (click on, look at portal, shake the tablet,
etc.)

condition on
transition pause

list no List of callbacks (click on, look at portal, shake the tablet,
etc.). Only affects the luma playout, not the content
playout

condition on
completion

list no List of callbacks (click on, look at portal, shake the tablet,
etc.).

Separate switch checkbox no Interactive area is different from portal content area (for
tablets)

Switch longitude -180° - 180° yes Position of interactive area

Switch latitude -90° - 90° yes Position of interactive area

Switch width slider yes Width of interactive area

Switch height slider yes Height of interactive area

Switch reference list no world/user

Table 7: Portal video effect parameters

4.3.2.3. Visualisation

A preview of an edited scene can be observed in the Program Monitor window. Selecting the
Portal effect in the Effect Control window enables overlay in the preview that visualizes
parameters of a portal and allows their direct modification.

Additionally the Preview mode parameter of the Portal effect allows to change how video is
rendered. There are 5 options in the Table 8:

Preview mode Description

Outside portal is not visible, only background

Inside portal video is visible, without any modifications
(projection, luma matte),

Luma matte luma matte layer of a portal is visible

Combine portal is composed into the background

Table 8: Preview mode parameters

38 D3.1 Design architecture Version 2.0, 30.01.2018

4.3.2.4. ImmersiaTV package export

The final step of content creation is the generation of an ImmersiaTV package containing a set
of media files and metadata describing their relations. When the user follows the workflow
described earlier in this chapter, export to the ImmersiaTV format should be done automatically.

It will be accomplished by a Javascript script run from an ImmersiaTV panel plugin (based on
Adobe Premiere Pro CC 2015 panel SDK5). A panel is a HTML document, which can use standard
Javascript, additional libraries (e.g. jQuery) and can interact with Premiere Pro API. It will include
a form to specify export parameters and to launch the export process.

The export process will have three main stages:

1. project analysis - tracks’ labels and portal video effects’ parameters should allow to

determine the structure of the final package.

2. metadata generation - from the results of the project analysis an XML file with metadata

described in chapter 4.6.4.2 Metadata should be created.

3. media files rendering and encoding - an export of each of the media streams as defined

in the metadata should be started.

The only required export parameter will be the device type (output path).

Additionally encoding parameters for each target device could be parameterized, however in
first versions of a plugin they will be fixed.

4.3.3. Workflow

Data acquired in previous modules are the input for production tools. Adobe Premiere Pro
natively supports the formats described in the previous chapters.

Tools in this module will produce a package of files (media files and metadata) ready for
distribution and compatible with ImmersiaTV player as depicted in Figure 9 .

Figure 9: Composition of the off-line production tools.

5 https://github.com/Adobe-CEP/Samples/tree/master/PProPanel

39 D3.1 Design architecture Version 2.0, 30.01.2018

4.4. Encoding

4.4.1. Description

The main functionality of the module is to provide an efficient and high quality encoding solution
compatible with the general purpose equipment (TV, HMD, tablets) available on the market. At
the moment, the most popular and widely supported codec in the consumer area is H.264/AVC
and it was chosen as a main solution for the Pilot 1 demonstration.

The Encoding module is responsible for implementation of video encoder and decoder
functionality used by other modules of the ImmersiaTV system. As the general standard selected
for first iteration and pilot is H.264/AVC, this section provides the guidelines regarding the video
coding format and underlying parameters to be used within ImmersiaTV from capture to
rendering and display, as well as for all other processing and streaming related matters such as
corrections, stitching, transcoding, etc.

The main objective of this specification is to ensure that the coding format in the complete chain
of processing from creation to consumption is clear and as much as possible harmonized in order
to reduce the number of transcoding and format conversions needed. Not only the quality of
the content but also complexity issues arise if transcoding should be performed between
different components in the processing chain.

4.4.2. Architecture

4.4.2.1. Codec definition

In principle, the highest quality content should be produced when generating content for off
line configurations (pilot 1). Therefore, the highest possible bit rate, frame rate, frame
resolution, and colour sampling must be achieved. Where possible, the influence of compression
on the quality should be minimized. It is however a fact that several existing devices and
hardware do not allow for uncompressed content. Based on the feedback received from
ImmersiaTV partners, for off-line recording of content, the following guidelines are followed as
far as the video format is concerned. Parameters of the codec are summarized in Table 9 below.

Parameter Value Comments

Encoder H.264/AVC Uncompressed where possible

Decoder H.264/AVC Compressed bitstream should be decodable by any widely used and
H.264/AVC compliant decoder such as ffmpeg.

Profile At least HiProfile
(HiP)

If the capture device does not allow, Main Profile is acceptable but
not recommended.

Bit rate control Variable rate If constraints do not allow, constant rate is acceptable but not
recommended

Color Space RGB, YCbCr, YUV YCbCr recommended

40 D3.1 Design architecture Version 2.0, 30.01.2018

Fame/Field
sampling

Progressive Interlaced should be avoided

Color sampling 4:2:2 4:2:0 is acceptable if 4:2:2 not possible

Frame
resolution

4K, UHD, HD The higher the resolution, the better

Frame rate At least 30Hz If capture device does not allow, then 25Hz is also acceptable but
not recommended.

Bit depth per
component

10bit (preferable)
8bits (acceptable)

The higher the better

Bit rate (total) At least 10 Mbps per
camera

The total bitrate corresponding to the number of cameras may arise
various issues regarding their capture and could affect the 10Mbps
lower limit.

Projection Equirectangular Relevant for omnidirectional videos.

Table 9: Off-line recording configuration

4.4.3. Workflow

The input to the Encoding modules is defined by the output formats supported by video
acquisition equipment and Production tools, it can be raw data or pre-encoded video files. As
the output the H.264/AVC encoded video files or streams are generated.

The Encoding module has direct interaction with Capture block (Input side), Production tools
(Input/Output side) and Content distribution (Output side) modules but the format and results
of the encoding procedure influence all the stages in the ImmersiaTV processing chain.

The streaming of video is largely dependent on the available HD and infrastructure capabilities.
A transcoding step will be necessary to convert the recorded content and to match it to what is
possible.

On the reception site the decoder is responsible for decoding of H.264/AVC encoded media
streams received by the client player and sending raw data to the rendering module. Regarding
decoding functionality of Reception, Interaction and Display module the rendering and display
of video is largely dependent on the available HD and display capabilities. The final parameters
of the encoding procedure will depend on the capabilities of both the streaming solution (see
below) and display devices. As a general rule, the video format, bit rate, frame and rate will
depend on the capabilities of a general purpose display as available on a typical HMD, a tablet
or a smartphone.

41 D3.1 Design architecture Version 2.0, 30.01.2018

4.5. Content Distribution

4.5.1. Description

This section specifies Content distribution mechanisms and deals with the transmission of all
data (media and metadata) from the main server where the content is stored, through the Wide
Area Network (Internet), and up to the user’s Local Area Network, where synchronized playback
among devices will take place. For multimedia delivery, or the ImmersiaTV content delivery, the
streaming technique that will be used is the MPEG-DASH standard. MPEG-DASH is a recent
standard, officially published in 20126, and reviewed in 20147. DASH is the acronym of Dynamic
Adaptive Streaming over HTTP so which clearly denotes two of its main goals: being adaptive
and use of HTTP as the network protocol.

4.5.2. Software architecture

This functional block handles communication between offline encoded content or live streams
and the end-user’s player. It encapsulates selected video streams into network protocols and
provides synchronized video and auxiliary streams to the player.

MPEG-DASH emerged aiming to be reference standard for Segmented HTTP techniques, as
before MPEG-DASH there were only proprietary or private approaches, like HLS (HTTP Live
Streaming) from Apple (it has also being published as an IETF draft8), HDS (HTTP Dynamic
Streaming) from Adobe or MSS (Microsoft Smooth Streaming) from Microsoft. All of them are
HTTP based and adaptive solutions, but MPEG-DASH appears to be the only option that might
get a wide adoption in the industry, as many of the main industrial actors already announced
support to it (Microsoft, Adobe, Netflix, Google, etc.9). There are three main reasons to choose
MPEG-DASH as the standard to follow in the ImmersiaTV project:

1. MPEG-DASH is getting adopted by the major players. This is a very important point in

order to get ImmersiaTV close to the market. Ideally, the content providers using mature

MPEG-DASH services would not need to drastically update their distribution scheme in

order to provide immersive experiences.

2. It is based on HTTP which means it is easily supported by many CDN services that

operate over the top and by any platform or infrastructure adapted for web content (i.e.

mobile networks).

3. It is an adaptive standard. Being adaptive might be of special interest in ImmersiaTV as

the project will handle different devices, screens and resolutions. In 360º video

resolutions up to 4K must be considered, however there might be some client devices

(i.e. tablets or smartphones) that are not capable of handling these high resolutions; in

that case adaptation is useful. If via MPEG-DASH the server is offering a simpler version

of the same content, a limited client might use it and be able to provide a lower quality

experience instead of failing to provide any service or experience at all. Although, the

quality can’t be too low to prevent side effects of omnidirectional video feeling and

6 http://standards.iso.org/ittf/PubliclyAvailableStandards/c057623_ISO_IEC_23009-1_2012.zip
7 http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip
8 https://tools.ietf.org/html/draft-pantos-http-live-streaming-13v
9 http://dashif.org/members/v

42 D3.1 Design architecture Version 2.0, 30.01.2018

perceiving. The right trade-off between the quality and effectiveness will be a subject of

QoE feedback.

MPEG-DASH has been already used and tested with 360º immersive video nearly out of the box
(just providing a specific player for 360, see for example a demo by BitMovin10).

MPEG-DASH is not a protocol, format neither a codec. As stated before it is an streaming
technique that makes use of HTTP protocol, however it is codec and format agnostic. MPEG-
DASH does not solve the HTML5 codec issues and does not describe the details about how a
specific codec and container could be used in a way the result is MPEG-DASH compliant. In order
to fill the gap the DASH Industry Forum provided several guidelines11 about how to use MPEG-
DASH together with H.264/AVC or H.265/HEVC codecs and ISO-BMFF container format (ISO/IEC
14496-12)12. ImmersiaTV will stay as close as possible to those specifications.

The project is something more than just providing a single 360º video, as it has been already
said, the project aims to provide a transversal immersive experience across devices. The impact
is that there will be several synchronized streams, and all of them will be contextualized with
the metadata defined in 2.5.2.1 This metadata will be delivered using a simple HTTP download,
to use the same mechanism as the media.

4.5.3. Workflow

The content distribution module as a communication service interacts mainly with two other
modules. On the input side with Production tools including the encoding module which provides
H.264/AVC encoded content (video files or live streams) as well as the metadata. The data
gathered from production tools are further encapsulated according to MPEG-DASH standard.

On the output site Content distribution module communicates with the receiver module
included in the Reception, Interaction and Display functional block which receives H.264/AVC
encoded MPEG-DASH media streams (with metadata) distributed by the streaming server over
the HTTP protocol. This module also deals with user feedback and passes requests generated by
the player to the streaming servers in order to provide an adaptive approach and support the
region of interest mechanism.

4.6. Reception, Interaction and Display

4.6.1. Description

This deals with the reception of the streams from the Wide Area Network (Internet), their
redistribution in a local area network, and the integration with the interactive input of the end-
user.

The player integrates the audio, video and data streams in a coherent omnidirectional scene,
parses the user input and adapts the environment appropriately to the reactions expected.
Examples of touch-based interaction include:

1. Browsing and selecting a specific content.

2. Starting/stopping the experience.

3. Selecting a region of an omnidirectional video to share through social media.

10 http://www.dash-player.com/demo/adaptive-vr-360-video-html5-demo/
11 http://dashif.org/guidelines/
12 http://standards.iso.org/ittf/PubliclyAvailableStandards/c068960_ISO_IEC_14496-12_2015.zip

43 D3.1 Design architecture Version 2.0, 30.01.2018

4. Zooming in or out.

Examples of interaction based on movements include:

1. Moving the head in an immersive display should update consistently the portion of the

omnidirectional video being displayed, to reflect basic sensorimotor correlations.

2. Moving the tablet around should also enable the update of the field of view.

Audio is played consistently across different devices, either in stereo (TV), either in binaural
format (tablet with headphones, as well as google cardboard and head mounted displays).

The chosen architecture involves two different kinds of connected devices, which synchronize
and interact:

● Receiver devices (TV Set, HMD, Tablet).

● Session Management device.

The receiver devices run the ImmersiaTV interaction and display software (in short, the
ImmersiaTV player). This software is a multi-platform player targeting the general consumer.
Consistently, this player is designed to be compatible with emerging broadcast synchronisation
standards (like HbbTV 2.013), and work on the main platforms available to deliver the
ImmersiaTV experience.

The session manager is a device connected to the same local network as the players, which
coordinates playback among them. It makes sure that all players synchronize to the same clock
and watch the same content, among other things. All functions provided by the session manager
can be integrated into the players, so any one of them can act as the session manager, thus
removing the need for an additional device on the network.

The Figure 10 shows a diagram of the connectivity of all devices in the home network.
Conceptual blocks inside each device are shown simplified. A more detailed view is given in the
next section.

Figure 10: Connectivity of devices in home network

13 http://www.etsi.org/deliver/etsi_ts%5C102700_102799%5C102796%5C01.03.01_60%5Cts_102796v0
10301p.pdf

44 D3.1 Design architecture Version 2.0, 30.01.2018

4.6.2. Software architecture

The ImmersiaTV player running on the receiver devices is based on the Unity3D14 engine. This
greatly simplifies deployment on a wide variety of end-user devices and adapts the experience
to the particular characteristics of each device.

The processing of the media streams is performed using the GStreamer15 open-source
framework. It receives and decodes different audio and video streams and delivers resulting
frames to Unity3D for rendering. The connection between GStreamer and Unity is performed by
a plugin developed within the ImmersiaTV project, called GStreamer Unity Bridge (GUB for
short)16 and publicly available.

The Figure 11 depicts the complete software architecture (including both kinds of devices), with
the most important blocks detailed in next sections.

Figure 11: Software architecture of a player

4.6.3. Session management device

This is a device on the same local network as the players which coordinates the distributed
playback experience. Initially it will be an application independent from the other players,
running on a separate machine. The goal, however, is to integrate it with the player application,
so any player can act as Session Manager, simplifying the setup for the user.

Its main functions are:

● Ensure all connected players see the same content

● When a player connects to a running session (there are previous players watching the

same content already), it “catches up”, starting the playback at the point where the

other players are.

14 https://unity3d.com
15 http://gstreamer.freedesktop.org/
16 https://github.com/ua-i2cat/gst-unity-bridge

45 D3.1 Design architecture Version 2.0, 30.01.2018

More precisely, it provides:

● A master clock

● Session management: Distributing the BaseTime (the wall-clock time at which content

playback started) and counting connected clients

● The media location (the remote MPD file URI)

● A discovery mechanism so the clients do not need to know the IP of the server.

● Optionally, a cache for the media files. Since many players might require the same

content, huge bandwidth gains can be achieved by using a local media cache. The

session manager, when running on a dedicated machine on the network, is the ideal

location for this cache.

Communication between the Session Manager and the clients will be based on protocols from
the DVB-CSS (Digital Video Broadcasting – Companion Screens & Streams) family to ease
eventual interoperability with HbbTV 2.0 devices.

4.6.3.1. Discovery

To avoid having to provide each client with the server’s address, the DVB-CSS-DA (Discovery and
Association) discovery protocol will be used, in conjunction with the DVB-CSS-CII (Content
Identification and Information) protocol. Combined, they provide the entry points for the other
protocols and features (DVB-CSS-TS, DVB-CSS-WC and media location). DVB-CSS-DA uses the
UPnP protocol, so there are plenty of available software libraries to aid its implementation.

The DVB-CSS-CII protocol will also be used to provide all players with the URL of the metadata
file describing the scene, so this URL only needs to be stored in one place and can be easily
changed.

Furthermore, it will easily allow caching, if this URL points to a local HTTP server in the same
machine, for example.

The DVB-CSS-CII is very well suited for this task. However, it only provides a contentID which
needs to be looked up in a Media Resolution Server (MRS) through HTTP to obtain the media
URL. To ease implementation and reduce the requirements of the devices, we will embed the
media URL in the CII response using private data, as already foreseen in the CII specification.
This protocol uses JSON+WebSockets.

4.6.3.2. Session Server

This block will count the number of connected players and give each one the base time when
they connect. When the first player connects, the base time is set to the current wall-clock time
(so the clip starts from the beginning). Following players will see the clip has already started.
When the last player disconnects base time is reset.

This functionality is very similar to the MSAS unit in DVB-CSS. Communication therefore will
resemble the DVB-CSS-TS protocol, with the clients requesting a session through
JSON+WebSockets, and the server replying with the current media time (base time). There are
available C libraries to help the development:

● https://libwebsockets.org/index.html

● http://www.json.org

https://libwebsockets.org/index.html
http://www.json.org/

46 D3.1 Design architecture Version 2.0, 30.01.2018

4.6.3.3. Synchronization

Multi-device synchronized playback should use standard protocols to achieve maximum

interoperability. Particularly, to support HbbTV 2.017 devices, the DVB-CSS18 (Digital Video
Broadcast – Companion Screen & Streams) protocols family has been selected. The DVB-CSS-WC
(Wall Clock) protocol is interesting, since it synchronizes the clock of all devices, so they all
provide the same time.

GStreamer, though, lacks support for DVB-CSS-WC synchronization which needs to be added.
This library is modular and plugin-based by design and could be used in implementation. Also,
this allows contributing the work back to the GStreamer open source community, extending the
project’s dissemination.

There are elements already in GStreamer that allow inter-device synchronization, although they
use a different protocol and therefore cannot be directly used. Their code, however, can serve

as basis to implement support for DVB-CSS-WC. These elements are GstNetTimeProvider19 and

GstNetClientClock20. For a usage example, take a look at the gst-rtsp-server’s21 test-netclock22

and test-netclock-client23.

This work will provide two new GStreamer libraries, a DVB-CSS-WC Server and a DVB-CSS-WC
Client, which will perform the same functions as the already present GstNetTimeProvider and
GstNetClientClock, using the DVB-CSS-WC protocol.

The source code will be hosted in a GIT repository, forked from GStreamer, to ease contributing
back to the original project. The library will be written in C and follow the GStreamer naming
conventions. There is an open source Python implementation by the BBC of the DVB-CSS-WC

protocol available here24 which can also be used to help implementation.

These libraries will then be used by the Synchronization Server and Synchronization Client
blocks.

4.6.4. Receiver devices

These are the players which display the immersive content to the user. They are programmed
using the Unity3D game engine to allow interoperability on a wide range of devices. Therefore,
most of the software modules are made in C#, with occasional calls to C when needed (for
GStreamer operation, for example).

This is the normal operation of an ImmersiaTV player:

17 www.hbbtv.org

18 www.dvb.org/resources/public/factsheets/dvb-css_factsheet.pdf

19 gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetTimeProvider.html

20 gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetClientClock.html

21 cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree

22 cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/examples/test-netclock.c

23 cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/examples/test-netclock-client.c

24 bbc.github.io/pydvbcss/docs/latest/wc.html

https://www.hbbtv.org/
https://www.dvb.org/resources/public/factsheets/dvb-css_factsheet.pdf
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetTimeProvider.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetClientClock.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetClientClock.html
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/examples/test-netclock.c
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/examples/test-netclock-client.c
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetTimeProvider.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetClientClock.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetClientClock.html
https://bbc.github.io/pydvbcss/docs/latest/wc.html
https://www.hbbtv.org/
https://www.hbbtv.org/
https://www.dvb.org/resources/public/factsheets/dvb-css_factsheet.pdf
https://www.dvb.org/resources/public/factsheets/dvb-css_factsheet.pdf
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetTimeProvider.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetTimeProvider.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetClientClock.html
http://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer-libs/html/GstNetClientClock.html
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/examples/test-netclock.c
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/examples/test-netclock.c
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/examples/test-netclock-client.c
http://cgit.freedesktop.org/gstreamer/gst-rtsp-server/tree/examples/test-netclock-client.c
https://bbc.github.io/pydvbcss/docs/latest/wc.html
https://bbc.github.io/pydvbcss/docs/latest/wc.html

47 D3.1 Design architecture Version 2.0, 30.01.2018

● Upon powering on, the player tries to discover a Session Manager on the network using

the Discovery Client. It receives from the Session Manager an entry points for the rest

of protocols and the URL of the media being played.

● The obtained URL points to a metadata file describing the scene, which needs to be

downloaded (by the Metadata reception module).

● The metadata is parsed and used to build the scene inside Unity3D (Scene building

module). The parts of the scene which require displaying media will instantiate GUB

objects as required (which, in turn, will instantiate GStreamer pipelines) and provide

them with the appropriate media URL.

● The player starts synchronizing its internal clock to the remote master clock using the

Synchronization Client.

● The player instantiates a Session Client which will inform the Session Manager that a

new client is connected, and in return, it will obtain the Base Time (This is, the wall clock

time at which playback of the current media started).

● Unity3D will take care of rendering the scene onto the display.

● During the whole session, the Data Logging block can retrieve information from any

module and produce a log file, to monitor the Quality of Experience.

● For testing sessions in which a questionnaire must be filled in before the experience, the

Access Control module ensures all information has been received before starting

playback.

Modules whose function is not clear from previous descriptions are described next.

4.6.4.1. Session Client

From the client perspective, this module is only needed to retrieve the current Base Time so it
knows at which point in the media playback has to start. This is done through the DVB-CSS-TS
protocol (only a small subset of it will actually be required). This small DVB-CSS-TS interaction,
though, is more interesting for the server, since it allows it to count the number of connected
clients.

Session Clients will periodically poll the server, as the protocol states, and this will also allow the
server to know when a client has been disconnected (via a timeout mechanism).

Also, each Session Client must have a unique ID (unique within the local network) so the server
can keep track of them.

4.6.4.2. Metadata

The ImmersiaTV experience is based on 2 ideas: synchronized content across devices, and
portals allowing interaction by blending different scenes, taken as traditional and
omnidirectional shots in an immersive display.

All the metadata in ImmersiaTV will be sent in XML format, in a dedicated, efficiently coded file
based on XSD schema. An event mechanism will be used, so the metadata can be added,
removed or updated at pre-established times. Interaction is also defined in the XML file so
metadata can be changed in response to user actions.

The ImmersiaTV Scene

The basic ImmersiaTV container will be called a Scene. Each Scene can contain the following
elements:

48 D3.1 Design architecture Version 2.0, 30.01.2018

● A unique string identifier (mandatory)

● A sequence of Shapes (defined below) showing some type of media

● A pointer to a CGI scene, containing additional geometry, textures, methods and other

elements that may be involved in the scene rendering

The ImmersiaTV Shape

Each Shape can contain the following metadata:

● A unique string identifier (mandatory)

● The geometry describing this shape (rectangle, sphere, …) and its size

● A list of Anchors (defined below) describing how this shape is to be situated in the scene,

and a method to merge the different Anchors.

● A series of media file names, indicating the texture and optional transparency masks to

render on the shape.

● A description of the projection used to turn omnidirectional media into a conventional

flat video stream (if any).

● Cropping parameters, if desired

The ImmersiaTV Anchor

Anchors are points in the scene used to place Shapes. In the preparation towards pilot 1, each
shape will have only one Anchor. Each anchor will contain the following metadata:

● A unique string identifier (mandatory)

● A reference frame (either the world or the camera)

● The polar coordinates (longitude, latitude and distance from the camera)

● A weight, used for merging different Anchors (not used in pilot 1)

The complete ImmersiaTV metadata specification

The above requirements have been implemented as an XML Schema Definition file (XSD),
available at the following URL:

http://server.immersiatv.eu/public_http/metadata/ImmersiaTV.xsd

This definition is precise, allows checking for validity of XML files, and contains documentation,
which can be processed to generate a human-friendly format, like the online pages available
here:

http://server.immersiatv.eu/public_http/metadata/ImmersiaTV.html

The URL of the XSD file can be used in XML files so they can be validated automatically.

Metadata callback specification

The metadata format defined above specifies some methods on the player to be called after
some user actions. The list of available methods is purposely left out of the definition of the
metadata in order to render it more generally, and to ease expanding this list. The following
table 10 describes the accepted values for these callbacks (used, for example in the onActivate
and onDeactivate attributes):

toggleVisibility, shapeId Toggles the visibility of the shape with the indicated Id.

http://server.immersiatv.eu/public_http/metadata/ImmersiaTV.xsd
http://server.immersiatv.eu/public_http/metadata/ImmersiaTV.html

49 D3.1 Design architecture Version 2.0, 30.01.2018

setVisibility, shapeId Makes the shape with the indicated Id visible.

unsetVisibility, shapeId Makes the shape with the indicated Id invisible.

playTransition, shapeId Starts playing the transition indicated with the
transitionFile attribute, on the shape with the indicated
Id.

pauseTransition, shapeId Pauses the transition indicated with the transitionFile
attribute, on the shape with the indicated Id.

playLimitedTransition,

shapeId, seconds
Starts playing the transition indicated with the
transitionFile attribute, on the shape with the indicated
Id, for the limited amount of time indicated in the
mandatory seconds parameter.

Table 10: Accepted values for call back

The shapeId parameter is always optional. If no Id is given (the parameter is missing), the
command affects the shape with the attribute.

A sample XML file containing ImmersiaTV metadata

The following is a sample ImmersiaTV metadata file (Figure 12). Please note the usage of
xsi:schemaLocation in the root node to import the XML Schema.

<?xml version="1.0" encoding="UTF-8"?>

<ITVEvents xmlns="urn:immersiatv:immersiatv01:2016:xml"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:immersiatv:immersiatv01:2016:xml
 http://server.immersiatv.eu/public_http/metadata/ImmersiaTV.xsd"

type="static">

 <DefineScene id="0" device="hmd" externalScene="TestScene1.unity"

time="0">

 <DefineShape id="0" type="rectangle" anchorMethod="simple"

mediaFile="FILE1"
 mediaProjection="none" mediaCropX="0" mediaCropY="0"

mediaCropWidth="1"
 mediaCropHeight="1" maskFile="FILE1MASK">

 <Anchor id="0" referenceFrame="world" longitude="0" latitude="0"
 distance="0.5" weight="0.8" maxAngularDeviation="45" />

 <Anchor id="1" referenceFrame="user" longitude="45" latitude="10"
 distance="0.5" weight="0.2" />

 </DefineShape>

 <DefineShape id="1" type="point" mediaFile="FILE2" />

 <DefineShape id="2" type="sphericalCap" size="1" mediaFile="FILE1"
 mediaProjection="equirectangular"
 onActivate="toggleVisibility,theatre_screen" />

 <DefineShape id="theatre_screen" type="mesh" mediaFile="FILE0"
 transitionFile="TRANSITION0" transitionState="paused"
 onActivate="playTransition" onDeactivate="pauseTransition" />

 </DefineScene>

 <DefineScene id="0" time="10">

 <DefineShape id="0">

 <Anchor id="0" latitude="10" />

 </DefineShape>

 <RemoveShape id="1" />

http://www.w3.org/2001/XMLSchema-instance
http://ftp.immersiatv.eu/public_http/metadata/ImmersiaTV.xsd

50 D3.1 Design architecture Version 2.0, 30.01.2018

 </DefineScene>

</ITVEvents>

Figure 12: Sample ImmersiaTV metadata file.

This file defines two events: One creating a new scene and one updating it.

The Scene initially contains 4 Shapes: One rectangle with two anchors and a planar video with a
mask, one point, one spherical cap with an equirectangular omnidirectional video and one
external mesh with a planar video (because this is the default value). Moreover, the spherical
shape (id “2”) can toggle the visibility of the external mesh shape (id “theatre_screen”) through
user interaction. Also, the external mesh shape has a transition mask, which starts paused and
can be played or paused through user interaction.

The second event triggers 10 seconds after the scene starts, and updates the latitude of one of
the anchors of the first Shape and removes the second Shape.

4.6.4.3. Metadata Reception

The metadata describing the scene contents, including media and interactions, will be contained
in an XML file hosted on a remote server. The Metadata Reception module has to retrieve this
file, through a simple HTTP GET request and provide it to the rest of the player.

The only input to this module is the URL of the XML file, which will be provided by the application
logic, after retrieving it from the Discovery Client.

4.6.4.4. Access control

Some of the tests require that the users fill in a questionnaire before the experience can start.
This questionnaire will be online and, upon completion, will provide a token (an alphanumeric
string, for example). The first screen in the player must ask for this token, which then needs to
be validated against a remote database. Only tokens which have an associated questionnaire
stored in the database will allow entering the experience.

4.6.4.5. Data logging

In order to allow integration testing and offline analysis of the events taking place in the system,
there is a data logging module present in the system.

Logged data can include static information like device, session and user characteristics, or
dynamic information like user view direction, network state, CPU usage, frame losses or the
momentary value of bitrate.

The module enables storing events in the push-like manner, where interested parties call
methods of the logging module’s API. The module then writes the logs to a file or a database.

After the session is logged to a database, a post-processing phase may begin, where data is read,
filtered, aggregated and analysed. The aim of the analysis is to identify and quantify any
incorrect behaviour of the system, especially by catching transient events that are possible in
any real-time system. Therefore it is vital for the logging module to provide all data necessary
for offline analysis.

Architecture

The logging module architecture is composed of two main components

51 D3.1 Design architecture Version 2.0, 30.01.2018

 Logging Client Library, which defines functions implementing a flexible logging interface
available for other ImmersiaTV modules. The library is meant to be run on (and monitor)
each device presenting stream.

 Logging Server, which is a central component storing the logs. The server can actually
be any database server, relational or not, depending on the deployment requirements.
The server is run in a network location that is accessible by all components of the system.

The general architecture of Logging module is depicted on Figure 13:

Figure 13: Logging module architecture and interactions

Workflow

All log data messages generated by different ImmersiaTV modules are stored in Log Database
acting as a Logging Server component. Messages are collected in a database as a sequence of
records.

Logged data includes static information such as device, session and user characteristics, or
dynamic information such as user view direction, network state, CPU usage, frame losses or the
selected adaptive bitrate.

All dynamic data is gathered periodically with frequencies adjusted to the dynamics of the
observed processes. The data allows for offline analysis of all crucial processes. Thanks to this,
the platform can be controlled and the proper presentation of streams can be ascertained.

Logging server

Logging server is a central element storing the logged data. It must be located on a network
location that is accessible by all monitored devices. The server consists of a database along with
its store, read and filter interfaces. The solution is flexible so any database implementation,
relational or not, can be used, depending on the deployment requirements. The server is capable
of handling several simultaneous log store operations.

52 D3.1 Design architecture Version 2.0, 30.01.2018

Client library

Client library provides interface which supports logging mechanisms for all ImmersiaTV modules.
The API is implemented as a shared libraries for C# (integrated with Unity 3D). Each class willing
to log events can obtain an individual log pushing instance, which then can be used to issue the
actual log commands. Each message has an individual level of importance assigned. The
messages are supplemented by global parameters identifying a session and a device.

As the library runs on devices presenting video, it is especially important not to influence
negatively the performance of the player, so to preserve the QoE. Therefore, the client logging
library uses own threads to communicate with the database, not to block other threads of the
application.

Logging data structure

The logging data have an open structure in order to ensure flexibility and extensibility. Each
module can log messages of custom content, depending on the specific context.

Messages are collected in a database as a sequence of records and are identified by parameters
like:

1. Parameters constant between sessions on a single device:
o user name
o device ID

2. Parameters constant only throughout single session:
o session ID

3. Parameters dynamic within each session:
o local timestamp
o network timestamp
o level of importance
o module name
o message content

As the log data messages are strongly related to the timestamps and time correlation between
logged events is very important, it is required to ensure the same frame of time reference for all
modules using logging mechanisms. Therefore the presence of a network timestamp, which is
precisely synchronised between devices.

4.7. Quality of Experience

4.7.1. Description

Quality of Experience (QoE) represents the degree of delight or annoyance of the immersive
visualization at the end-user’s side. The ImmersiaTV project makes a distinction between QoE
evaluations of the professional and residential end-users based on the acquisition of subjective
data (T4.3), and QoE estimations using objective metrics that assign quality scores to audiovisual
content by mimicking perceptual mechanisms based on training data (T3.7). The QoE module in
the ImmersiaTV platform will be a piece of software that provides QoE estimations of the
audiovisual content shown on the primary display device (tv screen) as well as the immersive
display device (head-mounted display, smartphone, or tablet). These QoE estimations will be
made available to other components in the ImmersiaTV platform, and can for example be used
to steer parameters inside the codec.

53 D3.1 Design architecture Version 2.0, 30.01.2018

4.7.1. Metrics for quality assessment

To prepare the QoE module, the Phase 1 platform includes a data logging module (Section
4.6.4.6) and subjective data gathering procedure.

As part of the pilot evaluation and execution plan (D4.1), the following metrics presented in
Table 11 were identified for measurement in pilot 1 and pilot 2 and will be gathered and
processed during Phase 2.

Data type Measurement of Logging Observation

Head-movement while
wearing HMD

Frequency direction /
angle

X

Switching viewing angle
in HMD

Frequency

Which content
X

Switching viewing angle
on tablet/smartphone

Frequency

Which content
X

Multi-device usage

Which devices are used in
combination

How often do people
switch between devices

Length of each
interaction

 X

Use of portals

Which portals are being
shown

What user input has
triggered some

interactive behaviour of
portals

X

Table 11: Metrics from logging module for QoE

Besides these measures that will form part of the logging module, subjective metrics are also
included as part of the user evaluation in WP4. These metrics include sense of presence, sense
of immersiveness, enjoyment of the content and evaluation of the image quality.

4.7.2. Objective quality metrics

Several objective quality metrics are studied and implemented in pilot 1 for QoE module. More
quality metrics will be implemented to fulfil the needs of ImmersiaTV platform. However, the
computational complexity constraints and resource usage should also be considered to pick up
the suitable quality metrics when integrating the QoE with ImmersiaTV components in Pilot 3.
Full-reference metrics including Peak Signal-to-Noise Ratio (PSNR), Structural SIMilarity (SSIM)25

25 https://doi.org/10.1109/tip.2003.819861

54 D3.1 Design architecture Version 2.0, 30.01.2018

index and, Gradient Magnitude Similarity Deviation (GMSD)26 metrics are implemented. As well,
several no-reference (NR) metrics are developed and will be used in case the reference frames
are not available. NR metrics including distortion-specific (Blurriness metric27, Blockiness
metric28, sharpness degree) and general-purpose (ShearletIQM29) methods are implemented. A
number of reduced-reference metrics are also developed which can be used in the QoE system.
The development of other useful metrics will be continued during pilot2 and 3.

Bit-stream based metrics which use a number of encoder parameter are also considered as an
option to be used when the video frames are not accessible.

26 https://doi.org/10.1109/tip.2013.2293423
27 https://doi.org/10.1016/j.image.2003.08.003
28 https://doi.org/10.1109/icip.2002.1038064
29 https://doi.org/10.1007/s11760-016-0957-7

55 D3.1 Design architecture Version 2.0, 30.01.2018

5. PHASE 2 PLATFORM AND ARCHITECTURE

5.1. Architecture overview

The development plan in Phase 2 focuses on the implementation of the tools and modules
required to demonstrate Pilot 2 and adapt the ImmersiaTV pipeline to a live scenario. The Pilot
2 architecture differs from Pilot 1 in technical aspects, so in this use case the omnidirectional
and directive streams will be captured real-time by cameras capable to deliver a live video signal.
Then the video will be processed and assembled in real-time by dedicated live stitching software
(camera-specific stitching software, Vahana VR, AZilPix Studio.One). Additionally, semi-
omnidirectional cameras are added, providing equirectangular views for use in HMDs or other
VR viewing devices, but not offering a full spherical view. This allows to spend the capture pixel
budget more intelligently, focusing better on where the action is, while significantly increasing
the number of points of view. Finally all stitched omnidirectional, semi-omnidirectional and
directional streams will be combined in the live production tool. Similar as in Pilot 1, the result
of the live production will be several H.264/AVC video streams served in MPEG-DASH
streamable format and one metadata file to be consumed by the end user’s devices. The
architecture of the content distribution and content reception sides remains the same as in
Phase 1. Therefore, we do not detail them again.

In the Pilot 2 workflow directional and omnidirectional videos are passed between components
as live streams. Live production tools enable the process of editing and combining multiple video
files in real-time. After live editing video streams and XML metadata file are passed to
distribution chain (MPEG-DASH server).

The general architecture of Pilot 2 is depicted on Figure 14.

Figure 14: General architecture for Pilot 2

56 D3.1 Design architecture Version 2.0, 30.01.2018

5.2. Live Capture and Stitching

5.2.1. Overview

While Pilot 1 used only “off-the-shelf” cameras that were available on the market at the time of
production, Pilot 2 will use a variety of live camera systems in addition to off-the-shelf ones:

● Go Pro/Elmo rigs combined with Vahana VR;

● Integrated “Orah 4i” cameras developed by VideoStitch;

● a new distributed camera system developed by iMinds/EDM, commercialized in their

AZilPix spin-off under the name Studio.One30;

● and directional broadcast cameras: Grass Valley LDK 8000 cameras.

The GoPro/Elmo rigs have been introduced in pilot 1 already. Live stitching with these rigs is

provided by Vahana VR, resulting in H.264/AVC video streams.

The integrated “Orah 4i” camera is a compact omnidirectional video rig developed by

VideoStitch, with integrated motion sensor and ambisonic 3D spatial sound microphone.

Stitching and encoding of the resulting equirectangular video stream is performed in the

VideoStitch Orah stitching unit producing an H.264/AVC video stream.

The AZilPix Studio.One system is a video capture and production system that accommodates at

the same time various models of 360 and panoramic camera rigs developed by iMinds/EDM and

custom 12-megapixel block cameras equipped with a fish eye lens, providing a 170 degrees

horizontal “semi-omnidirectional” field of view. These cameras have been found to be very

useful in providing a multitude of points of views, while focusing pixel budget more intelligently

on where the action is. They are typically used at the sides or the back of a concert stage. They

produce equirectangular video, handled in the same way as that of full omnidirectional video.

In short: they offer a better balance between the number of VR points of view from which action

is captured, and the field of view at each point. All video processing including stitching is

performed on an AZilPix Studio.One server, to which the cameras are connected. The output of

the server consists of 4 HDMI, DVI or DisplayPort outputs that can be fed into Vahana VR for

encoding the already stitched video, via a SDI convertor at the Studio.One server and SDI capture

board with Vahana VR.

These capture systems and their stitching solutions are presented in more detail in the next

paragraphs.

The directional cameras used in pilot 2 (cyclocross) will be Grass Valley LDK 8000 tv cameras,

which provide 1080i HD signals. Transport from the camera to the CCU in the central control

room (OB truck) is based on triax cables.

Nevion fibre sets with break-out boxes having 4 SDI channels and 1 Ethernet channel, can
transport the output streams to the live production tooling in the OB-VAN cabinet, either via IP
(Orah, VahanaVR) or SDI (EDM camera system).

They will all be connected to the live production servers of section 5.3, either by RTMP network
streams, or HDMI/SDI physical interfaces. Live Production Tool expect all streams to be RTMP
and compressed, so interface can be through Encoding block/Vahana VR for EDM camera.

30 See www.azilpix.com for description and pictures

http://www.azilpix.com/

57 D3.1 Design architecture Version 2.0, 30.01.2018

The architecture of Capture modules are depicted on Figure 15

Figure 15: Architecture of the capture modules for Pilot 2

5.2.2. Omnidirectional camera systems

5.2.2.1. Orah 4i

The Orah 4i camera, depicted on Figure 16, is equipped with 4 sensors. Contrary to previous
camera rigs used in Pilot 1, Orah is an integrated camera in a single housing and does not require
an additional rig for mounting several camera modules. It is equipped with 4 integrated lenses
and SONY EXMOR sensors as well as Ethernet output, and does not require additional stitching
software such as Vahana VR or Videostitch Studio: stitching is done by the Stitching Box
connected to it (i.e. the camera control unit, which takes the form of a mini PC). Maximum
resolution for stitched output is 4K in 30p. The output H.264/AVC video bit rate transmitted by
RTMP varies between 5 and 25 Mbit/s.

Figure 16: Orah 4i Camera

H3PRO6	
6x	GoPro3	

Elmo	QBIC	

Orah	4i	

iMinds	-EDM	
Camera	
System	

VideoS tch	
Vahana	VR	 Live	

Produc on	
Tools	in		
OB-Van	

HDMI	,	4x	1920x1080p30	

Pilot	2	

HDMI	,	6x	1920x1080p30	

Orah	S tching	Box	

AZilPiX	
Server	CoaXpress	

RTMP,	
4096x2048p30		
over	IP/Ethernet	

Direc onal	
Camera	

e.g.		Grass

Valley LDK	8000		

4x	RTMP	over	IP/Ethernet	

RTMP,	4096x2048p30		over	IP/
Ethernet	

HD	SDI	
(Op onally	over	single	mode	fiber	

through	Nevion	fiber	boxes)	

CoaXpress	

HDMI,	4x	1920x1080p30		
(Op onally	over	single	mode	fiber	

through	Nevion	fiber	boxes)	

CoaXpress	

op cal	fiber	

op cal	fiber	

Nevion	fiber	set	 Nevion	fiber	set	

HDMI,	6x	1920x1080p30		
	

op cal	fiber	

triax	

op cal	fiber	

58 D3.1 Design architecture Version 2.0, 30.01.2018

The Orah 4i needs a single Ethernet cable, which takes power in and streams videos out to the
Stitching Box. The Orah 4i was designed for live immersive events, and has features such as an
embedded Inertial Measurement Unit which allows to have automatic horizon levelling of the
output spherical video (i.e. the horizon remains horizontal whatever the position of the camera
is) and automatic stabilization (if the camera is not static). The camera is equipped with 4
microphones to capture a 3D ambisonics sound field, which will ease the process of recording
omnidirectional audio for ImmersiaTV system. The main characteristics are presented in Table
12.

Sensors 4 x Sony EXMOR

Hardware
synchronization
between sensors

Associated to a
Stitching Box,
delivers 4K/30 fps
to an SD card or an
RTMP streamed
H.264/AVC output.

Video resolution per lens 1920 * 1440 Pixels

Lenses Fisheye 4x f2.0 Horizontal field of
view close to 180°

Camera exposure Automatic exposure

White balance Automatic white balance

Inertial Measurement Unit Detecting the motion and orientation of
the camera

horizon-levelling of
the output video

stabilization of the
output video

Microphone 4x high dynamic range microphones ambisonics sound
field

Output 4x H.264/AVC RTMP streams Streamed to the
Orah Stitching Box

Power 48V over PowerOverEthernet

Dimensions & Weight 8 x 7 x 6.5 cm

0.5 kg

Table 12: Specification of Orah Camera

59 D3.1 Design architecture Version 2.0, 30.01.2018

5.2.2.2. Studio.One Cameras

AZilPix, a recently founded spin off of Hasselt University and iMinds (now IMEC), brings to the
market a video capture system named Studio.One, that integrates high resolution block cameras
and custom omnidirectional and panoramic capture rigs designed by iMinds-EDM. It aims at
simultaneous live conventional + VR broadcasting.

The Studio.One system consists of cameras and a custom server equipped with the Studio.One
software. The server is described further in this document. Here, we concentrate on the
cameras.

For pilot 2, one or two full omnidirectional 360 video rigs will be used, depending on availability,
as well as up to 8 block cameras equipped with a 170-degree field of view fish eye lens. We call
these latter “semi-omnidirectional” cameras: they are used exactly in the same way as
omnidirectional rigs, but do not offer a full spherical coverage.

In our experience, the 360 camera rigs make most sense providing overview to a spectator,
making him/her feel as being central in the event, as well as conveying the ambiance of the
event. Due to several factors, technical as well as non-technical, 360 video is not suited for
conveying detail in our experience. The semi-omnidirectional cameras are well suited for
conveying detail. They could be placed along important sections of a cyclocross track for
instance, allowing to follow the action by cutting between them, for instance.

The 360 cameras are connected to a stage box, at up to 20 meters from the camera. The stage
box is connected to the AZilPix Studio.One server, over optical fiber which can be hundreds of
meters or more. The Semi-omnidirectional cameras are connected directly to an AZilPix
Studio.One server unit, at up to 100m.

360 camera rigs:

 6 full HD Sony imx249 sensors

 12-bit color resolution

 Up to 40 fps

 2.7mm fujinon C-mount fish eye lens, offering 185 degrees field of view on each sensor

 Sensor shutters are synchronised to microseconds precision.

 Double redundant 360 spherical coverage allowing control of location of stitching seams
in addition to stitching sharpness and distance. Enables advanced stereoscopic and 3D
omnidirectional reconstruction algorithms (in research).

 Precalibrated

 Connected to a stage box via 6 gigabit Ethernet cat5e UTP network cables and one
neutrik XLR 5-pin connector cable for synchronisation signals and power.

 Rigid black anodized aluminium housing.

 Mounts physically on a microphone tripod or manfrotto magic arm.

360 camera stage box:

 Located up to 20m from 360 camera rig.

 Connects camera via 6 cat5e UTP cables and one neutrik XLR 5-pin connector cable

 Connects to the AZilPix Studio.One server via an optical fiber cable, allowing placement
at 300m with multimode optical fiber, or kilometres with single mode optical fiber.

 Optional SMPTE LTC time code signal input over balanced line level audio neutrik XLR 3-
pin connector cable, for automatic synchronisation with broadcast video cameras and
audio.

Semi-omnidirectional cameras:

60 D3.1 Design architecture Version 2.0, 30.01.2018

 12 megapixel sensor, 60 dB dynamic range, up to 180 fps

 Canon EF L 8-15 mm fish eye zoom lens, at 8 mm focal length

 Precalibrated

 Solid black anodized aluminium housing

 Mounts physically on 3/8” 16tpi microphone tripod or manfrotto magic arm, or ¼” 20
tpi camera tripod (same as 360 rigs).

 Integrated Canon EF lens controller allows to set focus distance and aperture from
AZIlPix Studio.One software.

 Connected to AZilPix Studio.One server unit via a HD-SDI cable and a gigabit Ethernet
cable of up to 100 meter:

o Power, synchronisation signals, control and data over standard HD-SDI cable.
Longer distances and higher frame rates with multiple links.

o Lens control power and data over gigabit Ethernet cable (to Power over
Ethernet capable gigabit Ethernet switch or power injector).

All devices mentioned above are depicted on Figure 17 and Figure 18.

Figure 17: AZilPix Studio.One 360 camera rig (bottom left and middle) and semi-omnidirectional camera with canon
fish eye lens (top left). Stage box on the right.

Figure 18: AZilPix 360 camera centre front Dranouter music festival main stage (ICoSOLE EU project, www.icosole.eu)

61 D3.1 Design architecture Version 2.0, 30.01.2018

As shown on Figure 19, semi-omnidirectional video is sufficient for full 360 experience in this
and many other cases: there’s little to be seen behind, above or below the camera. Semi-
omnidirectional cameras allow to concentrate pixel budget on where the action is, and obtaining
a better balance between number of points of view and field of view per point. Full 360 cameras
of course are required when the action covers more than 170 degrees.

Figure 19: Example of semi-omnidirectional video.

5.2.3. Live stitching system

Depending on the used cameras, several live stitching systems can be used for pilot 2:

● Vahana VR, for GoPro or Elmo rigs. Vahana VR can adapt to cameras available on the

market, and can be used for stitching preview and adjustments. It may also be the

preferred solution if we need to go to resolutions and frame rates larger than 4K 30 fps;

● Orah Stitching Box, to be used in conjunction with the Orah 4i camera;

● Studio.One distributed stitching system, to be used in conjunction with Studio.One

camera.

62 D3.1 Design architecture Version 2.0, 30.01.2018

5.2.3.1. Vahana VR

Vahana VR is VideoStitch’s software application for live stitching, running on a computer with
dedicated input and output ports. The main view is presented on Figure 20 and Table 13 contains
parameters.

Figure 20: Vahana VR software screenshot

Video signal capture
options

Hardware adapters:
● Magewell HDMI capture cards

● BlackMagic Deckling SDI cards

Network adapters:
● RTP video streams

Full list available on
http://support.vide
o-stitch.com/hc/en-
us

Video output options Hardware adapters:
● BlackMagic Deckling SDI cards

Network adapters:
● RTMP H.264/AVC streams

Full list available on
http://support.vide
o-stitch.com/hc/en-
us

Computer requirements Windows 7 or later, 64 bits

nVideo GeForce graphics card 900
series or better, at least 3 GB of

graphics memory

Linux not
supported officially,
but Ubuntu 12.04.4

64 bits should
works.

No Mac version.

Preview Live preview on computer screen, or
through Oculus Rift head mounted

display

63 D3.1 Design architecture Version 2.0, 30.01.2018

Max output resolution Depends on the graphics card

Supported input
projections

Rectilinear lenses, Fisheye lenses,
Equirectangular inputs

Supported output
projections

Equirectangular

Table 13: Specification of Vahana VR software

Vahana VR’s workflow for live is the following one:

● read the input sources coming from an omnidirectional rig

● calibrate the camera rig geometry (through self-calibration, or an offline calibration

template)

● calibrate the camera rig photometry (to make up for various exposures, colour

temperatures and lens vignetting)

● map each camera view onto a 360° equirectangular frame

● adjust the frame orientation for horizon levelling

● output the equirectangular video, through an RTMP stream or the computer physical

HDMI/SDI interfaces

For Pilot 2, other types of output projections will be supported, such as cubic mappings, as
recommended by EPFL and the codec WP (see section 5.4.5).

Also for Pilot 2, common rig templates will be added, to have an easier calibration workflow,
and first H.265/HEVC coding tests will be performed.

Since Vahana VR is capable to ingest an already stitched input such as Studio.One’s, it will be
possible to use it in a stand-alone mode as a live projection remapper and encoder, before or
after the live production tools in the pipeline, until the live H.265/HEVC encoder of 5.4 is ready.

5.2.3.2. Orah Stitching Box

The Orah Stitching Box (depicted on Figure 21 is the live processing unit connected to the Orah
4i camera through a routed network. Its main characteristics are in Table 14.

Figure 21: Orah Stitching Box

64 D3.1 Design architecture Version 2.0, 30.01.2018

Live output resolution 4096 * 2048 pixels, 30 fps

Output Projection Equirectangular

Output Field of View 360° full spherical

Preview Through a web app, accessible on the
box WiFi network

Encoded Video Format H.264/AVC High, Main or Baseline
profile

Output video bitrate From 5 to 25 Mbps

Output protocol RTMP streams

File format to save the inputs/outputs
to disk

Table 14: Specification of Orah Stitching Box

As for Vahana VR, other types of output projections will be supported in Pilot 3, as
recommended by EPFL and the Encoder component. The box has an HDMI output which will be
activated by a software update.

5.2.4. Studio.One stitching

The Studio.One cameras are eventually connected to one or more Studio.One servers running
software to control the cameras and process their raw video streams, including stitching.

The software implements a full videography pipeline, running at 4 billion pixels per second. The
pipeline encompasses low level sensor related image corrections, state of the art denoising, an
advanced Bayer demosaicking, color space conversion to sRGB or Rec709 color spaces for
computer monitor and HDTV respectively, correction of lens vignetting and geometric
distortions, warping into rectilinear, equirectangular or other projection views, with blending
for panoramic and 360 video stitching, video image enhancements using advanced edge
preserving filtering, unsharp masking, and several calibration and monitoring widgets including
histograms, waveform monitors, digital vectorscope, overexposure indicator, and focus peaker.

The software implements camera, recording and playback control, as well as an elementary
interface for creating conventional video or VR video editing. It also supports live editing, via
presets and transitions, and view switching. A low level API is available, as well as a RESTful web
API allowing control over the network. Live remote production was tested from IBC 2016 in
Amsterdam, on the live video screens at the Leffinge-Leuren music festival near Ostend in
Belgium, that took place at the same time. It was one of the main results of the ICoSOLE EU FP7
project. The interface is the key to building a distributed capture and production infrastructure.

65 D3.1 Design architecture Version 2.0, 30.01.2018

The capture and processing server performs real-time stitching. With a HDMI 1.4 output, UHD
stitched content is produced at max. 30 fps. This is a limitation of the video output on the GPU
or the HD-SDI conversion or display connected. The stitching process is fast enough to allow 4K
stitched output at over 100 fps from the here described cameras.

Transmission is realized via an encoder or conversion box attached to the HDMI, DisplayPort or
DVI computer video output. Multiple simultaneous outputs are available, for instance one
rectilinear conventional full HD output stream along an equirectangular UHD panoramic output.
The server can take a number of our semi-omnidirectional 170 degrees cameras along with a
360 rig, and produce multiple equirectangular outputs as well.

The server software supports GPU video encoding with NVidia CUDA (NVENC API). We use it
typically for generating stitched video files. We will test live video encoding, and will offer it in
the trial if tests are successful. Main risk concerns the fact that it introduces a synchronisation
point in our otherwise highly asynchronous multi-threaded software.

The base plan is to convert at least one equirectangular output to 6G-SDI with a BlackMagic
HDMI mini convertor and feeding into a Vahana VR server with BlackMagic Declink studio 4K
capture card. Vahana VR provides further processing and H.264/AVC video streaming.

Camera to screen latency is in the order of 2 to 3 frames, half of which is probably due to the
screen tested (dell ultrasharp full HD display).

Physically, the server is mounted in a 4 units or 6 units 19 inch rack mount flight case, together
with time code generator, audio recorder and/or power over Ethernet switch for lens control.
The flight cases have a footprint of 60x60 cm and are 25 respectively 40 cm high. They require
220V power and consume typically around 500 Watts, including monitor screens if set up like
that. We will remote control the servers at pilot 2, via a 100 megabit Ethernet connection and
using the RESTful web API. Ethernet and SDI video stream for live editing and monitoring can be
brought to the OBVan over fiber using a nevion breakout box.

The Studio.One server is depicted on Figure 22 and screenshots of software are on Figure 23
and Figure 24.

Figure 22: Studio.One server in rack mount case with time code generator and audio interface and robust
connectors to stage box, cameras and control room.

66 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 23: Screen shot of the interface of the Studio.One software. Concerns a medical surgery procedure video
capture for training purposes. The session integrated 2 HD-SDI sources, a 360 rig and 4 semi-omnidirectional rigs -

all real time on one server. (with dlive – eSurgie)

Figure 24: Equirectangular video produced simultaneously with previous. (In fact, a semi-omnidirectional camera
would have been better for this point of view, as the action is concentrated in less than 170 degrees field of view.)

67 D3.1 Design architecture Version 2.0, 30.01.2018

5.3. Live production Tools

5.3.1. Description

Live production tools design and architecture are based on the experience obtained from the
Pilot 1 execution and requirements for the live workflows gathered during evaluation sessions.
Taking into account the existing complexity and challenges of traditional live TV production
workflow the aim is to provide the Live Production tools operator with functionality to produce
spectacular immersive experience and at the same time avoid additional work load.

Live production tools package consists of the following software:

 Cinegy Live VR

 Cinegy Transport

Cinegy Live VR provides the operator with the user interface for live VR production while Cinegy
Transport takes the complexity of all required media transformations to connect all sources and
targets in the background. Cinegy Live VR software screenshots are presented on Figure 25 and
Figure 26 below.

Figure 25: Sample user interface for Cinegy Live VR

68 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 26: Sample configuration interface for Cinegy Live VR

5.3.2. Architecture

The following architecture will be used during the Pilot 2 execution (Figure 27):

RTMP

Cinegy Transport

Delay/Sync

Transform

Publish

Cinegy Live VR
RTP

MPEG-DASH

Metadata

RTSP

RTP
Reception

Figure 27: Architecture of Live Production Tools

All sources to be used in the Live Production are registered with Cinegy Transport server(s) to
be explicitly synced both on metadata and physical level. The synced streams will be also
optionally transformed into different versions (re-packaged) to be accepted by the
corresponding target. For example, incoming RTMP stream from Orah 4i/Vahana VR will be
synced with other streams in production (delayed) and emitted as RTP preview stream for
Cinegy Live VR and emitted as MPEG-DASH stream for the player consumption.

The Cinegy Live VR software provides the operator with the required tools to create exciting
immersive experience by providing real-time preview of available source streams, ability to
define the active source, dynamically switch between sources, define optional portal size and
position. All operator actions are timestamped and stored inside the live production metadata

69 D3.1 Design architecture Version 2.0, 30.01.2018

file. The updates of the metadata files expressed as events are to be displayed by ImmersiaTV
players.

The primary goal of Pilot 2 for live production tools is to ensure synchronous delivery of all media
coming from different sources and locations (directional cameras, omnidirectional cameras of
different models, etc.).

The architecture will be extended and optimized during Pilot 3 to allow user interaction within
live production (advanced portals activation, choice between directors’ choice and user driven
experience, etc.).

5.3.3. Workflow

5.3.3.1. Synchronization

As source streams are coming from different platforms (camera models, stitching modules,
encoding modules) the delays or time desync between them will be notable. In order to remove
desync and provide the same time base Cinegy Transport Delay module will be used. This
module accepts incoming RTMP/RTSP/RTP streams, patches stream metadata to insert the new
common timecode, delays the transmission of the output to the defined number of seconds
(milliseconds) and emits the modified re-packaged result as RTP stream.

This allows defining custom delays for each of the source stream in production to make them in
sync after Cinegy Transport Delay stage is passed. As virtually no computations are done at this
stage the only remarkable requirement is amount of available RAM to buffer all incoming
stream. The amount of RAM depends on the number of streams and the largest required delay.

5.3.3.2. Live Production

Using Cinegy Live the interface operator is able initiating the scene changes by adding additional
objects (for example, portals), changing the primary video source, displaying additional graphical
objects (highlights), etc. All changes are stored as events with the defined format in the
metadata XML file that is being updated and published via the Distribution module for the
external viewers to consume.

At the same time the operator is able to preview the changes to be made using local low latency
ImmersiaTV player and compatible device.

5.3.3.3. Publication

Cinegy Transport is responsible for producing the final version of the streams to be published on
the external access point. MPEG-DASH version of the stream is created and made available to
the players for the direct consumption. Additionally Cinegy Live VR provides external players
with the metadata XML file describing the current ImmersiaTV scene.

5.4. Encoding

5.4.1. Overview

This section specifies the encoding process required to provide 360 video content within a live
production workflow as set forth for Pilot 2 in ImmersiaTV Part B Technical Annex.

70 D3.1 Design architecture Version 2.0, 30.01.2018

In contrast to ImmersiaTV Pilot 1 where the encoding step was performed off-line and therefore
could be implemented as a stand-alone component of the production flow, Pilot 2 requires the
encoding process to be performed in-line with the video output from the live production tools
(see Figure 28).

Real-time encoding necessitates a series of trade-offs which ultimately affect the quality of
experience delivered to the consumer. In the following we outline the proposed architecture to
be adopted by ImmersiaTV for the Pilot 2, explore the particularities of video encoding for
ImmersiaTV, discuss the key factors directly effecting encoded media quality, review the
necessary compromises which need to be made to achieve real-time processing and explore the
impact which above mentioned compromises will have on the service provided.

In view of codec choice (see discussions below) and for Pilot 2, H.264/AVC shall be adopted as
the primary codec solution. This assures a realizable solution in compliance with the overall
Phase 2 project requirements. In parallel and in view of Phase 3 project goals, support for
H.265/HEVC shall be explored and implemented.

5.4.2. Requirements

5.4.2.1. H.264/AVC based solution

For an H.264/AVC based solution, the encoder will be fully integrated within the Vahana VR
platform and Orah cameras. Upstream external requirements are those specified within the
Vahana VR system.

External requirements are:

● Compatibility with H.264/AVC High, Main or Baseline profile

● Frame size: ≤ 4K

● Frame rate: ≤ 30 fps

● Chroma: 4:2:0 at 8 bit

● Projection: Equirectangular

● Output: RTMP stream at 5 ~ 25 Mbps

5.4.2.2. H.265/HEVC based solution

An H.265/HEVC based solution will be realized on a stand-alone platform which is co-located
next to the Vahana VR system. Upstream external requirements are:

● Interface: uncompressed video frames over HDMI or SDI

● Frame size: ≤ 4K

● Frame rate: ≤ 30 fps

● Chroma: 4:2:0 at 8 bit

● Projection: Cubic 2x3 rotated

● Signalling of input frame stream characteristics - once per live stream at initialization

Downstream external requirements are:

● Projection: native support of Cubic 2x3 rotated projection in player or integration of a

re-mapping function from Cubic 2x3 rotated to supported projection at the reception

system (post decoding)

● Frame size: determined by capabilities of reception system (max: same as input)

● Frame rate: ditto

71 D3.1 Design architecture Version 2.0, 30.01.2018

● Chroma: ditto

● Output: RTMP stream (max 25 Mbps)

● Signalling of output encoded video stream configuration (frame rate, size etc.) - once

per live stream at initialization

Design and configuration requirements:

● Real-time hardware (GPU) supporting encoding of single video stream

● Encoder input: YUV frames at 8 bit color depth

● Operating system: Ubuntu Linux LTS 16.4 (64 bit)

● System: High end workstation (or rack mounted server).

● High speed (SSD) disk.

● GPU: NVIDIA GeForce GTX 1080 (“Pascal” architecture) or similar

● Framework: FFmpeg 2.6 or later (GNU license)

● Interface - input: HDMI or SDI card allowing for real-time frame acquisition and

buffering. Requires SDK supporting a real-time API

● Interface - output: RTMP over Ethernet

● Encoder configuration: Per encoding session - configuration based on up and

downstream session information and based on pre-configured encoder configurations.

5.4.3. Real-time encoding architecture

The following block diagram illustrates the proposed encoding system for Pilot 2 and serves to
illustrate both the required trade-offs and key design decisions:

Figure 28: Real-time video codec within the ImmersiaTV work flow

There are different process steps moving from left to right in the above figure:

Both the Videostitch Vahana VR and EDM/AZilPix Studio.One real-time stitching system provides
stitched content at up to 4K resolution and 30 fps over an HDMI/SDI output in uncompressed
format (i.e. on a frame-by-frame basis). This sets the benchmark for maximum encoder
performance in a real time setting.

Both Vahana VR and Studio.One stitch input frames onto an equirectangular projection. This
projection is sub-optimal for encoding purposes as it contains a high degree of redundant pixel

72 D3.1 Design architecture Version 2.0, 30.01.2018

data (see section 5.4.5 below). Therefore, the output from Vahana VR can be re-mapped onto a
projection which enables the encoder to perform in a more optimal fashion. This is of particular
importance in a real time setting where resource wastage (in terms of frame sizes) should be
avoided.

For Pilot 2 the re-mapping process will be integrated into the stitching system (i.e. inside the
machine hosting the Vahana VR software or the Studio.One server).

The particular re-mapping applied to the video frames prior to encoding needs to be considered
at the rendering stage of the playback process. Different devices require different mappings. As
such, a re-mapping to projections supported by display devices may be required. As detailed in
Section 5.4.5 this “re-re-mapping” will lead to a loss of quality and will incur additional
computational load at the rendering stage. As such it may be advantageous to perform the pre-
encoding re-mapping to the projection which is natively supported by the display device while
making compromises in terms of best encoder efficiency and quality.

The stitched and appropriately re-mapped video frames are passed to the real time encoder
which is to be realized on a dedicated computing platform. This platform needs to support the
output generated by Vahana VR and therefore be equipped with an HDMI/SDI input card with
suitable drivers and an API supporting programmatic control, real time management and
pipelining of the input video frames.

Downstream play-out in ImmersiaTV restricts the options of possible encoders to either
H.264/AVC or H.265/HEVC. The trade-offs resulting from an encoder choice in terms of quality,
bandwidth, input frame formats and rates, chroma subsampling, bit depth, computational
complexity and host platform requirements are summarized in Section 5.4.5 below.

In terms of a forward looking platform design, H.265/HEVC is the natural encoder choice. Yet
this choice needs to be matched to the capabilities of the decoder on the terminal which plays
out the received video bitstream. At this point in time these capabilities are not always
guaranteed and there are open questions in terms of supported codecs, target frame size, rate,
bit depth, color coding and projections which can be rendered.

In view of a conservative solution for Pilot 2, support for H.264/AVC will be extended beyond
the Pilot 1 realization to support real time encoding. Given that the Vahana VR system supports
native output of H.264/AVC over RTMP, the development work can be limited to configuring an
H.264/AVC transcoder to operate in real time and output the frame sizes and rates which can
be successfully decoded on the client end. This approach ignores the potential computational
and bandwidth reductions that can be realized through re-mapping of the video frames
generated by Vahana VR. Yet, introducing this re-mapping into the workflow would require an
initial decoding step (of the H.264/AVC content generated by Vahana VR), followed by a re-
mapping followed by a re-encoding to H.264/AVC. In addition (see above) the received and
decoded H.264/AVC bitstream may require an additional re-mapping to conform to the
requirements of the display device.

In view of assuring substantially better visual quality, H.265/HEVC should be adopted as the
encoding standard. Here the computational requirements at both the encoder and decoder are
substantially higher. But on the encoder side, cost effective solutions are now available.
Furthermore, and in view of Pilot 3 where encoder control and optimization is foreseen through
QoE parameters supplied in real time by the play-out system, H.265/HEVC offers a greater scope
for dynamic encoder control and adaptation.

73 D3.1 Design architecture Version 2.0, 30.01.2018

5.4.4. Comparison of H.264/AVC vs. H.265

For a preset target visual quality, H.265/HEVC offers compression which is between 35% and
50% better than H.264/AVC. The improved compression offered by H.265/HEVC is offset by a
substantially higher complexity of the encoding process. Likewise, decoding of H.265/HEVC
encoded content is more complex than that for H.264/AVC. This poses challenges, particularly
for battery powered devices where it only makes sense to offer H.265/HEVC decoding with
embedded hardware support.

The following table 15 lists the real time H.265/HEVC encoder solutions currently on the market:

 Encoder Real-time Implemen
tation

Open
Source

License Notes

1 Intel MSS HEVC
Encoder

4k p60 8-bit SW No Commercial Intel® Xeon® and 6th
generation Intel® Core™

2 x265 4k p60 10-bit SW Yes dnG G LPG
eliicrem oG
omecLic

Dual Intel Xeon E5 v3
server

3 Fraunhofer HHI
HEVC SW Encoder

4k p60 10-bit SW No Commercial Available as SDK
(multiple platforms)

4 Vanguard Video
V.265 Encoder

4k p60 8-bit SW No Commercial Runs on 36 cores

5 NVidia NVENC 4K 8-bit HW (+
SDK)

No Commercial Maxwell (GM206),
Pascal;

Table 15: List of H.265/HEVC implementations on the market

In view of Pilot 2, solution number based on NVidia NVENC (number 5 in Table 13) offers the
most efficient route to real-time encoding but offers limited flexibility with regards to encoder
optimization (as this is implemented in hardware within the NVENC GPU). In view of Pilot 3
where real-time optimization on the basis of QoE measurements will be implemented, x265
solution (number 2 in Table 13) is the only avenue. Here it should be noted that the x265 code
base (as available under GPL 2) does not achieve real-time performance. This can only be
reached after substantial re-factoring of the code base for high computational efficiency.

5.4.5. Re-mapping

Omnidirectional images and video must be represented in a panoramic mapping in the form of
a rectangular picture/frame in order to be processed by an encoder (H.264/AVC, H.265/HEVC,
etc.) Equirectangular projection today is the most widely used representation supported by all
capture devices and stitching tools. However, this representation contains redundant pixels,
especially in the polar regions. To optimize the geometrical representation and before
processing a frame by an encoder, re-mapping should be performed.

There exists a range of projections which utilize different geometric transformations in order to
reduce the number of pixels per frame, notably variations of cubic projection (cubic 3x4, cubic
3x2, cubic 2x3 rotated), truncated square pyramid projection, and more complex icosahedron

74 D3.1 Design architecture Version 2.0, 30.01.2018

and dodecahedron projections. Some of these projections preserve the visual quality of the
rendered viewports (e.g. cubic) while others decrease the quality of select viewports via
downscaling of the corresponding regions in the spherical image (e.g. truncated square
pyramid). The following Figure 29, schematically outlines the re-mapping for an input YUV image
and indicates the respective reductions in the resulting number of pixels:

Figure 29: The re-mapping process for an input YUV image

During transformation from one projection to another, not every pixel of the target image has
a correspondent pixel in the source image. Figure 30 illustrates pixel loss during re-mapping
from equirectangular to cubic projections. Pixels which do not exist in the source
equirectangular picture are marked with red color:

Figure 30: Pixel loss during remapping from equirectangular to cubic projection

75 D3.1 Design architecture Version 2.0, 30.01.2018

In order to fill these gaps, an interpolation or a re-sampling of the source image must be
performed. Another purpose of re-sampling is to prevent aliasing. It appears in details where a
Nyquist frequency is higher than the sampling frequency of the signal. The most common re-
sampling algorithms are nearest neighbour, bi-linear, bi-cubic, and Lanczos interpolations. Re-
sampling represents the computationally most expensive part of the remapping process and a
bi-linear strategy will be used for Pilots 2 and 3.

In the context of remapping for encoder optimization we must choose an optimal projection.
The following main criteria should be considered: representation efficiency (pixel redundancy),
visual quality of rendered image, and re-mapping complexity. Cubic projection 3x2 with rotated
faces is the recommended choice as it preserves virtually the same quality as equirectangular
picture, reduces pixel redundancy and the computational complexity is low. Moreover, rotating
particular cube faces reduces spatial complexity of the picture which leads to higher
compression efficiencies.

5.5. Distribution

Architecture and workflow of Distribution component follows the approach from Pilot 1 with
the exception of the WAN content publication. Cinegy Transport and Cinegy Live will publish
MPEG-DASH streams and metadata Xml files for immediate consumption by the external
players. The distribution architecture will be tested for the scalability and possible number of
connected clients.

It is expected that the Distribution architecture will be revised in several iterations during the
Pilot 2 preparation and test runs on dedicated events in order to ensure scalability, robustness
and high-availability.

5.6. Reception, Interaction and Display

Architecture and workflow of Reception, Interaction and Display component remains the same
as in Section 4.6 (Pilot 1).

5.7. Quality of Experience

5.7.1. Description

Quality of Experience (QoE) represents the degree of satisfaction or annoyance of the immersive
visualization at the end-user’s side. The QoE module delivers quality scores for omnidirectional
video contents which is well-correlated to human user opinion. According to the obtained
quality score, the codec parameters can be adjusted to improve quality.

5.7.2. Software Architecture

The QoE module is located at the server side and is responsible for quality assessment of the
videos. Figure 31 shows the overall diagram of the QoE module implementation.
The QoE metric is a model to estimate the quality based on the distortion, content features, bit-
rate, etc.

76 D3.1 Design architecture Version 2.0, 30.01.2018

As shown in the Figure, the QoE module receives information from client and server sides for
quality assessment. The QoE module has two inputs: (a) distortion features and (b) parameters
sent by client (delay, etc.) through a side channel.

The distortion features are the parameters that represent the quality degradation. These
parameters include quality-sensitive features extracted from the decoded (distorted) frames.
The distortion features can be obtained either from a decoder simulator located in the External
server, or directly from the client side.

The client information (such as delay and Movement acceleration of HMD, Display device, etc.)
are provided via a side channel.

The gathered information are fed into the QoE metric module. Based on this information, the
QoE metric delivers a stream of quality scores.

It is important to consider the effect of delay on the user experience. The delay problem has not
been observed in Phase 1 but it may become an issue in Phase 2 due to online streaming. In case
of observed delay (freezing/stalling), the raw information of the delay (start and duration of
delay) will be considered in the model. The raw information will be sent to the server through a
side channel.

The scope of Pilot 2 is to develop an objective QoE module to evaluate the quality of videos. In
pilot 3, a QoE module with a feedback loop will be provided for the ImmersiaTV platform that
will steer the parameters of the video encoding in real time.

Figure 31: Architecture of QoE component

5.7.2.1. List of QoE parameters

The QoE module will require a number of information as input to assess quality. Table 16
contains a list of required information for QoE module.

77 D3.1 Design architecture Version 2.0, 30.01.2018

Parameter Type and description Units Frequency Where is
measured

Bit-rate Dynamic Information (int) kbps Per second Client

Frame-rate (fps)

Dynamic Information -
content frame-rate

(int) fps Per second Client

Frame resolution Dynamic Information -
content resolution - Width

and Height

(int) Width
pixels

int Height pixels

Per frame Dash Server or
Client

Field of view

Static Parameter of the
device

(int) degrees in
horizontal
direction

Per stream Client

Display device (Tablet,
HMD, etc.)

Dynamic Information - Per change-
occurrence

Client

Movement acceleration
of HMD

Dynamic Information -
Position and time

(float)
Horizontal and

Vertical degrees
of the center of

FOV

per frame Client

Video Frames
(reference and distorted

ones)

Dynamic Information - The
distorted frame can be

obtained in the server side
using a simulation of

decoder (Decoder
emulator)

- per frame Server

Delay Information

Dynamic Information - start
time and end time of

stalling/delay

(float) seconds
since start of the

session

per occurrence of
each buffer

underrun start and
end

Client

Table 16: List of statistics required for QoE assessment

5.7.2.2. QoE Library

The QoE library will require both static and dynamic logging information as input. The static
information will be sent once when setting up the QoE module. The dynamic information needs
to be continuously recorded at specific time intervals.

The logging information will be provided in a data-interchange format (JSON, XML, etc.). The
format should be backwards compatible if new parameters are added, also it should allow
recording only a subset of full parameters' list. The library will be written in C/C++ in the server.

The QoE library uses the parameters of logging to estimate quality. The output is a stream of
quality scores whose values are between 0-100. The higher value shows the higher quality.

78 D3.1 Design architecture Version 2.0, 30.01.2018

5.7.3. Workflow

For pilot 2, the QoE module will be devised and tuned for H.264/AVC codec. In pilot 3, the QoE
can be extended and/or redesigned if new quality degradation sources are introduced (e.g.
quality degradation in audio, capturing, new encoding type - H.265/HEVC, etc.).

The QoE module can provide quality scores (from 0 to 100 for instance) to represent the quality
degree. It could be a stream of scores. The QoE module extracts the required parameters and
feed the parameters into the QoE model to estimate the quality.

As an initial prototype, we will only focus on the main distortion factors (Bitrate or delay for
instance) to estimate the quality. The main goal at this stage is to ensure that the QoE can
properly receive information and perform an objective quality assessment. Afterwards, the QoE
module can be further improved by using more sophisticated models.

In order to validate the QoE module, the performance of the QoE will be examined on test videos
with different distortion levels (videos generated with different codec parameters).

5.7.3.1. Feedback to the encoder

In Phase 3, the QoE module design will include a feedback loop to communicate with the
Encoder. A number of advice codes will be provided for Encoder (based on the quality score) to
steer the parameter settings for better quality.

79 D3.1 Design architecture Version 2.0, 30.01.2018

6. PHASE 3 PLATFORM AND ARCHITECTURE

6.1. Architecture overview

The development plan in Phase 3 focuses on the implementation of the tools and modules
required to demonstrate Pilot 3. Pilot 3 extends both off-line and live scenarios, so in general it
defines the final architecture of ImmersiaTV system. The required improvements in the Phase 3
focus on providing Exploration mode, repetitions, social media bindings, extended
synchronization between devices as well as advanced H.265/HEVC encoding and enabling QoE
assessment and feedback to the encoder.

The general architecture of Pilot 3 is depicted on Figure 32.

Figure 32: General architecture for Pilot 3

New elements added to the diagram in comparison to Phase 2 is synchronization between
traditional broadcast (TV) and internet streaming which is described next sections.

6.2. General extensions in Pilot 3

6.2.1.1. Introduction

There are several improvements for ImmersiaTV system in Phase 3, which apply to both – offline
and live scenarios. The most important ones are described in following sections

6.2.1.2. Exploration mode

For the advanced pilot 3, the concept of Exploration Mode is introduced. For more elaborate
explanation, we refer to Section 3.4 of deliverable D2.2 and to Section 2.3 of deliverable D2.3,
in particular Section 2.3.2 Key pilot concepts. Exploration mode is illustrated in Figure 33. In
contrast with broadcast mode, the TV scenes are decoupled (i.e. not in sync) from the
mobile/HMD device experiences, in order to further refine the specific added value each device
can deliver within the ImmersiaTV concept. The main storyline runs on TV, but is interrupted
with specific explorative experiences on the second screen devices in so-called “break-out
segments”. While exploration mode is activated, the television can provide a view of what is
playing on the HMD for non-HMD viewers in the living room. User actions in the HMD can trigger

80 D3.1 Design architecture Version 2.0, 30.01.2018

events on the tablet, such as providing more information on specific objects or personas that
the HMD viewer is interacting with.

Exploration Mode has no fixed timing, but a professional storyteller can predefine time windows
such minimum and maximum duration for exploring scenes in HMD. The interaction between
HMD and tablet is typically designed to stimulate social interaction between tablet user and
HMD viewer. Optionally, HMD viewers can pause/resume and replay scenes. In case multiple
HMDs are activated, these devices are syncrhonised with each other.

Figure 33 - Illustration of Exploration Mode concept for a whodunit scenario.

6.2.1.3. Social media

The people are motivated to share with others to feel connected and to nurture relationships.
There are many examples as platforms where people share their content as YouTube, Twitch,
Facebook, Twitter and create connections, discussion or information. Sharing the content of
ImmersiaTV wants to rich the experience and generate social bonding.

Offline

During the video on demand play, user should have a possibility to store actual view of the table
or HMD devices then to publishing The clip with recorded path (head movement in HMD and
camera panning on tablet devices) on social media portals which support (e.g. Facebook).

81 D3.1 Design architecture Version 2.0, 30.01.2018

Live

During live streaming, user should have a possibility to store actual view of the table or HMD
devices then publishing clip with recorded path (head moment in HMD and camera panning on
tablet devices) on social media portals which support (e.g. Facebook).

One of the requisites, store the path of the head movement of the user with server in order to
publish on social media.

6.2.1.4. Immersive audio

The implementation in Phase 1 and 2 was dedicated on providing immersive experience around
TV, but focused mainly on delivery of 360 video. The accompanying audio consisted of
transmitting standard stereo audio, which proved to be insufficient to achieve the full immersion
effect. Therefore the Pilot 3 focuses on adding Ambisonic audio to the existing sound
transmission methods. These changes require an appropriate way of recording, post-
production, transmission and sound reproduction in the client applications. Details are
described in chapter 2.Synchronization

6.2.1.5. Synchronization

Earlier defined synchronization mechanisms (in Section 4.6.3) expected all devices to access
computer network. It enables algorithms for precise, fast and reliable establishing common clock
signal utilized for content playout. Pilot 3 adds support for traditional TV sets that receive only
broadcast signal.

Other devices (tablet, HMD) can adapt to the content on TV trying to recognize played audio.
The player, after user’s permission, will use microphone to record fragment of the soundtrack.
Then using encrypted channel it will be sent, with time information, to dedicated server. In
response it expects information about delay between broadcast stream played on TV and
internet stream.

6.2.1.6. Replays

The replays can be activated when a special event occurs at the scene, the replay mode will drive
to an asynchronous mode where the user can seek a time position, pause and play and explore
the whole scene when a 360 video is being reproduced.

The synchronization between devices will be deactivated when in replay mode, so the session
manager will keep sending times for synchronization, but the device times that are in replay
mode will be unaltered. The replay mode is optional and could be selected from a portal that
will signal when the replay mode is available.

The replays will be stored in the server, when in live scenario, the server will record a clip with
the duration of the replay in order to deliver it to the devices in replay mode, and it has to be
signalled with a special portal or hotspot. For video on demand case, the replays will be
connected to significant moments in the stream and will drive to a new mode, allowing loops,
synchronous and asynchronous mode compatibility and jumps into different scene setups.

82 D3.1 Design architecture Version 2.0, 30.01.2018

6.3. Capture and Stitching

The capture and stitching architecture, equipment and workflow largely stays the same as in
pilot 2. The Orah cameras and VideoStitch software previously developed and made available
remain in use by partners.

One novelty concerns the deployment of a single-lens 6.4K 360 video capture solution made
possible thanks to extreme fish eye lenses, offered by AZilPix Studio.One.

The advantage of such single lens VR capture solution essentially consists in the fact that
stitching is no longer necessary. This solution does not suffer for any stitching artefacts, like
ghosting, or differences in shading or illumination of neighbouring cameras in a multi-camera
rig.

The main limitation is that only 5/6th of the full sphere gets covered. However, in first test
deployments, we learned that this is far most often not an issue: there usually is a part of the
full sphere not containing any useful information or action that could easily be filled in with
some more useful background or interaction widgets. The disadvantage of not covering the
entire sphere is compensated by the avoidance of stitching and stitching issues.

Figure 34: AZilPix Studio.One single-lens VR video capture solution, utilizing an extreme fish eye lens covering 5/6th
of the full sphere in a single (absolutely seamless) video.

83 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 35: single-lens VR video snapshots: note the total absence of any stitching issues such as ghosting, allowing
to have subjects much closer to the camera, and enabling considerably more freedom in camera placement.

A second difference w.r.t. pilot 2 concerns the ability of Studio.One to encode captured video in
real-time into H.264/AVC or H.265/HEVC (up to 8K) avoiding the need for separate encoders to
deliver video to following steps in the ImmersiaTV architecture. At least two independent, but
perfectly synchronised, simultaneous streams can be produced live.

In addition, the Studio.One system now also allows multi-channel audio to be captured and
streamed together with the video, perfectly synchronised based on SMPTE LTC time code, either
provided externally, or generated internally.

6.4. Off-line Production tools

6.4.1. Description

In the pilot 3, comparing to pilot 1, some innovations to the offline story telling are proposed,
requiring adaptations in production tools. The main difference is related to introducing
Exploration Mode, which breaks the previous linear and fully time defined progress of the
content. Also more complex interaction schemas between devices are required. However these
changes can be added to the tools without major disruption to hitherto architecture and
workflow.

84 D3.1 Design architecture Version 2.0, 30.01.2018

6.4.1. Architecture

Each of linear segment of the story can be produced as a separate sequence (chapter) with the
approach mastered in Pilot 1 and the only addition is, that the relations between them must be
defined. These relation must define progress of time (order of the chapters appearing without
user interaction) and possible user actions (changing chapter for whole session or for single
device – see 6.8.5 Metadata). Therefore it will be possible to reference another chapters from
interaction points and at the chapter end.

Such an approach allows to define required in Pilot 3 switching to (and out of) Exploration Mode
with flexible progressing with content and enabling additional unsynchronized content.
Potentially it would allow also even more complex scenario, with branching stories and
alternative endings, beyond expectations of Pilot 3.

Another extensions needed to fulfil the requirements of Pilot 3 several are:

- hot-spots – the extension of portal idea. It should ease the definition of the region of the scene
and associating user actions with it. While the portal main purpose was to present additional
content, with possible interaction, the hot-spot main intent is defining interaction point, with
optional content displayed. Technically the difference is minor (portal is rectangular, hot-spot
circular), but this distinction may be more user friendly.

- action for setting variables that need to be shared and stored during the session and defining
conditions based on them. This extension adds new actions of portals/hotspots Interaction.
When the user activates such an action, information about it should be broadcasted to all
devices in the session, which can perform additional actions (showing/hiding additional content
when some objects were found, changing chapters, etc.). This information is also stored in the
session, so devices can check the status and behave accordingly to earlier actions/decisions.

- placeholder for screen cast. It should be a special template media object, which will be placed
on the TV track to indicate screen cast from HMD. This way editor can define periods when the
user should switch from watching TV and use HMD, and the HMD screen is shared to the main
screen. Such functionality is defined for exploration mode.

6.5. Live Production tools

6.5.1. Description

During the third iteration of the project, the live production tools will be extended to provide
better usability during the preparation stage where the main efforts of the director are
concentrated. Low latency local preview will be provided to ensure efficient scene design and
composition.

During the live event itself, instant replays functionality will be added in order to provide access
to the selected moments, chosen and prepared by the director to the viewers. All live streams
will be streamed to the viewers but also recorded and available for the reference by the director.

6.5.1. Architecture

From the components point of view the architecture of Live Production Tools for the third
iteration of the project remains unchanged and components will match those used in Pilot 2.
The difference will be on the possible options and available features.

85 D3.1 Design architecture Version 2.0, 30.01.2018

Cinegy Transport will be extended to provide an option to record the live MPEG-DASH stream
for on-demand access in order to provide replay functionality. Direct transcoding mode will be
added for the source streams that are compatible with MPEG-DASH delivery specification to
allow better resources utilization and efficiency (mostly supported for streams generated by
Studio.One cameras).

Cinegy Live VR will be extended to provide alternative low latency metadata file for the quick
previews during the preparation stage. Additionally, application interface will be extended to
provide advanced controls when working with Studio.One cameras by using provided API.

6.5.2. Workflow

The largely the live production workflow remain unchanged and can be split into 3 logical stages.

The preparation stage is the most time and efforts consuming one. During this stage director
should carefully design and test the full set of features and options that will be available for the
viewer during the live event itself. This includes layout of interface elements for all devices,
definition of possible interaction points in user exploration mode, list of non-live extra content
available. In order to full requirements of this complex preparations stage Cinegy Live VR user
interface will be re-worked based on the end user and professional user. Current
implementation does not provide proper visual guidance on the changes that are being made to
the objects in the scene, so the final result should be checked using the corresponding device.
The controls representation will be changed to better describe parameters being controlled (for
example, coordinates in 3D space). Additionally, local preview for all devices will be rendered on
the PC screen for better visualization. Optionally, operator will be able to use the hardware
device to check the final scene representation.

The live production stage requires from director mostly providing guidelines to the viewers in
order to follow the most spectacular events. This is achieved by providing visual indications for
the cameras with the most interesting content and providing replays of the specific moments
from the current live event. In order to achieve this Cinegy Live VR interface will be extended
with explicit controls allowing the director choice either to be mandatory (i.e. force all viewers
changing the view to the specified scene) or optional – by providing only visual indication
allowing viewers to decide whether they will follow the suggestion or leave the current view
untouched.

The live stream from each camera will be reordered in parallel to the live distribution and
available for the director to review and create replays. Cinegy Live VR interface will be extended
to allow local review of the material and selecting specific segments by marking start and end
times. The approved replay will become available for the viewers who are able to switch from
live translation to the recorded content and then resume the live experience.

The final stage includes post-event activities, like publishing the final version of the event online
for on-demand review, allowing limited user exploration mode by restricting available points of
view (for example, removing no-longer-topical ones), etc.

86 D3.1 Design architecture Version 2.0, 30.01.2018

6.6. Encoding and Decoding

6.6.1. Description

During the third iteration of the project, the encoding process shall be dynamically controlled
by feedback provided through a quality of experience analysis both at the encoder output and
at the end user terminal. Iteration three should build on H.265/HEVC related work during
iteration two in order to realizing this capability.

6.6.1. Architecture

For the third iteration of the project, video encoding process and the encoding-delivery-
decoding process chain has been refined as outlined in the following figure 36:

Figure 36. Refined encoder-deliver-decoder process chain

Counting on omnidirectional nature of the content there several approached to optimize
encoding process. The most promising, however, is the visual attention coding.

Visual Attention Coding: This set of methods exploits reducing of the information entropy of
the signal representing an image of a frame by reducing special complexity of the regions which
lie outside of the focus of viewers’ attention. According to Figure 37, adaptive pre-filtering is
applied after the optional re-mapping stage and before the base encoding block. The
information about visual attention is received from QoE module and used to form a smoothing
mask for a frame or a sequence of frames. Gaussian kernel can be used in the filter.

87 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 37. Encoder architecture diagram

The following cases are possible for visual attention coding:

a). Single user attention. In a unicast case, the information about current viewer gaze is
transmitted back to encoder and used to form a filter which reduces the quality in of the regions
not currently seen. The main different from the adaptive sliced delivery approach is that there
is no need in a DASH-like server, and the system can be realised with simple pre-filtering.

b). Real-time combined attention. In a case of broadcasting, QoE module gathers the gaze
information from all the viewers and after performing a statistical analysis provides a feedback
to the encoding system with a visual attention map for each frame or a sequence of frames. The
received visual attention map is then used to form a smoothing filter and to apply it to the video
sequence.

c). Pre-obtained attention statistics. When one needs to broadcast pre-recorded omnidirectional
content, visual attention statistics can be obtained during the test viewing session or during the
first broadcast if the recording is to be shown more than once. Similar to the previous use case,
visual attention statistics is gathered by the QoE module. However, since there are no real-time
restrictions, statistical analysis can be improved.

d). Automatic estimation of visual attention (saliency maps). Incoming video stream is pre-
processed with a special saliency map estimation algorithm. During this step, preformed either
in the encoder or in the quality of experience module, the heat-map of estimated visual
attention is produced. The obtained data is used, then, to remove redundant visual information
from a frame by applying weighted Gaussian filter according to the saliency map.

Taking into account that the full feedback response time of the ImmersiaTV broadcast can be up
to 10 or more seconds, it is not feasible to implement the methods a, b, and c alone. Hence, the
method d “Automatic estimation of visual attention” is to be used as the main visual attention
analysis process. The other methods described above, however, can be implemented (if
required and if possible in particular cases) to assess post factum the quality of the performance
of the method d and adjust the estimation algorithm parameters.

Base	Encoder
(AVS	or	HEVC)

Adaptive	Pre-
encoding	Filter

Encoding	process	control

Dynamic	RoI Data Quality	Feedback

Re-Mapping

Optimal	Mapping
Parameters

QoE,	gazestitching	info

to	CDNstitched	content

88 D3.1 Design architecture Version 2.0, 30.01.2018

6.7. Delivery and Reception

6.7.1. Description

For pilot 3 the MPEG-DASH produced streams will be composed of HEVC and AVC video streams
and stereo or ambisonic audio, support is added to implement adaptive streams depending the
decoding capabilities in the target device, and scene based audio, with ambisonic audio,
resulting in four channels that can be mapped to different audio sources.

Equirectangular to cubemap projection can be done in the server to distribute a smaller video
stream preserving the visual quality.

6.7.1. Architecture

The same architecture from previous pilots will be followed, the server will produce the MPEG-
DASH streams, transcoding to HEVC or AVC depending on the bitrate to optimize the distribution
of higher resolution versions, and ambisonic audio will be packaged in the same stream.

In order to deliver replays, the highlight moments have to be signalled, this will come from the
production module, and it will result in the recording of the live streaming to be then distributed.

Same functional blocks will be preserved, improving the communication between the end
devices and the server, and allowing the intercommunication of server with the devices through
an open API.

The synchronization manager will allow the communication between different kind of devices
to send messages and allow multidevice interaction.

6.7.2. Workflow

The system will behave the same way it used to work in previous pilots, the client will request
an xml file defining the different contents and the possibility of joining an active session, when
the content is selected the synchronization to the session manager will occur, and the different
video, audio and image streams will be received and decoded.

For the third pilot the user can break the synchronization, so the principle of synchronized
experience will be altered, allowing different media consumption depending the use case, and
one user can modify the contents being shown in another device.

6.8. Interaction and Display

6.8.1. Description

The general architecture and workflow of Interaction and Display component remains the same
as described for Pilot 1 and Pilot 2 in section 4.6. However Pilot 3 introduces several additional
functionalities, which require some extensions to existing modules.

Significant change is expected in scene building, as redefined metadata can describe more
complex scenarios, with advanced interactions schema. It requires also to increase the scope of

89 D3.1 Design architecture Version 2.0, 30.01.2018

data shared by the devices in one session (e.g. information about user actions), but already
defined mechanisms will be reused. They will also allow sharing the HMD view with TV.
Additional submodule in media processing pipeline will enable support of ambisonic audio and
new optional synchronization method will open ImmersiaTV for use with traditional TV sets.
Details of these improvements are described in following paragraphs.

6.8.2. Screen cast and social media sharing

One of expected functionality in Pilot 3 is sharing view from HMD to TV in LAN or publishing it
in social media. To assure high quality, decrease delay and optimize performance of HMD device
it will only stream metadata (mostly head position).

TV will recreate HMD view, rendering the same video stream with received metadata. It will
perform the same operation as HMD application, with the only difference, that HMD retrieves
head position directly from sensors, while TV will read it from network stream.

Network channel for metadata streaming from HMD to TV will be implemented as an extension
to Session Manager device defined in 4.6.3.

Similar approach can be used for publishing HMD view in social media. Video is available on the
server, player only needs to publish metadata (fragment boundaries, viewing path) without
additional video encoding or data uploading.

Figure 38 Diagram of data sources for recreating HMD view on TV

6.8.3. Immersive audio

Support of ambisonic audio requires additional step in media processing pipeline of the player.
Hitherto format of decoded sound could be directly played from the speakers. Ambisonic sound
represents soundfield in the position of the listener and must be transformed for the real
position of the speakers. Conceptually this process is similar to rendering of visual media.

Ambisonic sound can be rendered for different number and positions of speakers. It can fixed
for stereo or 5.1 sound systems, or binaural sound for headphones can be generated. In the
second case the position of the head must be updated, the same as it already is done for 360o
video.

90 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 39. New module for rendering ambisonic audio in media processing pipeline.

6.8.4. Extended synchronization

This section specifies the extended synchronization mechanism that is required for live scenarios
where Session Management device, described in Section 4.6.3, is not available for ImmersiaTV
players, due to inaccessible WLAN (public locations), or missing capabilities to host Session
Manager (non-smart TVs). In this scenario playback synchronization is done only once, in
contrast to scenarios with Session Manager application, where synchronization information is
delivered to clients periodically. For this task Audio-Fingerprinting based solution was selected.

6.8.4.1. Architecture

The architecture of the component is depicted on Figure 38.

Figure 40. Architecture of extended synchronization

Extended Synchronization mechanism provides, for ImmersiaTV clients, two kinds of
information required to sync with live stream, and provide multi-device synchronized playback:

91 D3.1 Design architecture Version 2.0, 30.01.2018

 ContentInfo - Uri of ImmersiaTV-XML describing additional content

 SyncInfo - timestamps required for time synchronization

The process consist of following stages:

 client-side audio sample capture

 server-side audio sample fingerprint extraction

 server-side fingerprint matching

 server-side live content fingerprint extraction and database update.

6.8.4.2. Components

 SynchronizationClient - /component of ImmersiaTVClient/ - is responsible for audio
sample capture and communication with SynchronizationServer

 SynchronizationServer - /standalone application/ - handles the communication with
SynchronizationClient, uses FingerprintEngine to compute SampleFingerprint and store
it in FingerprintStorage.

 FingerprintEngine - /component of SynchronizationServer/ - computes fingerprints of
provided audio sample

 FingerprintStorage - /component of SynchronizationServer/ - stores fingerprints and
ContentInfo, may provide search and match functionality if that is beneficial for server
performance.

 ContentUpdateClient - /standalone application/ - receives dash segments of tv stream
and updates FingerprintStorage with computed fingerprints.

6.8.4.3. Workflow

Content fingerprint update procedure is defined as following:

1. ContentUpdateClient is configured with dash manifest Uri of TV stream and
ImmersiaTV-XML describing additional content available,

2. ContentUpdateClient reads the manifest to determine location and current segmentid.
3. ContentUpdateClient periodically downloads the segment containing audio track.
4. ContentUpdateClient generates the fingerprint for downloaded segment and saves it

with content information into fingerprint storage.
5. ContentUpdateClient periodically removes fingerprints that ware generated for video

that was broadcasted more than x seconds ago.

Synchronization procedure is defined:

1. User initiates the procedure
2. SynchronizationClient (unity or web) connects to SynchronizationServer and requests

required sample properties. SynchronizationServer responds.
3. SynchronizationClient records an audio sample with required properties (sample rate /

length etc.), and stores the time of sample begin.
4. SynchronizationClient sends the sample to SynchronizationServer
5. SynchronizationServer generates SampleFingerprint and compares it with

ContentFingerprint from FingerprintStorage, to find position where the similarity
between sample and content fingerprints is biggest.

6. if position with similarity above defined threshold is found, server responds with

92 D3.1 Design architecture Version 2.0, 30.01.2018

7. ContentInfo and SyncInfo, additional information like similarity ratio are also send.
8. SynchronizationClient uses received information to connect and sync with selected

content.

6.8.5. Metadata

The experience is not necessary attached to time anymore. The user can navigate through the
narrative among different paths. New interaction elements as hotspots and event actions come
into the scene. To reach the different narrative lines inside the ImmersiaTV experience and the
interaction between them there is a need to extent the metadata structure.

The ImmersiaTV Chapter

Each Chapter can contain the following elements:

● A unique string identifier (mandatory)

● A dictionary of Scenes

● The synchro describing this Chapter (once, loop, no_synchro)

The ImmersiaTV Event Action

Each Event Action can contain the following metadata:

● A unique string identifier (mandatory)

● The command action to be done

The ImmersiaTV Shape

There are some new metadata needed for hotspots or shape play reproduction that can contain
each shape:

● A string for the hotspot’s tooltip message

● The loop describing in the shape (synchro, no_synchro, no_synchro_loop)

The complete ImmersiaTV metadata specification

The above requirements have been implemented as an XML Schema Definition file (XSD),
available at the following URL:

http://server.immersiatv.eu/public_http/metadata/v4/ImmersiaTV.html

This definition is precise, allows checking for validity of XML files, and contains documentation,
which can be processed to generate a human-friendly format, like the online pages available
here:

http://server.immersiatv.eu/public_http/metadata/v4/ImmersiaTV.xsd

The URL of the XSD file can be used in XML files so they can be validated automatically.

Metadata callback specification

The metadata format defined above specifies some methods on the player to be called after
some user actions or in event actions.

http://server.immersiatv.eu/public_http/metadata/v4/ImmersiaTV.html
http://server.immersiatv.eu/public_http/metadata/v4/ImmersiaTV.xsd

93 D3.1 Design architecture Version 2.0, 30.01.2018

changeChapter, chapterId Moves to the indicated chapter Id.

changeChapterAll, chapterId Moves all devices to the indicated chapter Id.

Table 17: Accepted values for call back

A sample XML file containing ImmersiaTV metadata

The following is a sample ImmersiaTV metadata file (Figure 40). Please note the usage of
xsi:schemaLocation in the root node to import the XML Schema.

<?xml version="1.0" encoding="UTF-8"?>

<ITVEvents xmlns="urn:immersiatv:immersiatv01:2016:xml"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:immersiatv:immersiatv01:2016:xml

 http://server.immersiatv.eu/public_http/metadata/ImmersiaTV.xsd"

type="static">

 <DefineChapter synctype="synchro_once" id="0">

 <DefineScene id="0" device="tablet" time="0">

 <DefineShape id="theatre_screen1" type="sphericalCap"

mediaFile="sphere_set_1" startClip="irisOpen,4" endClip="dissolve,3">

 <Anchor id="0" distance="0.7"/>

 </DefineShape>

 <DefineShape id="1" type="hotspot" size="0.05"

tooltip="Second chapter" onActivate="changeChapter,1">

 <Anchor id="0" referenceFrame="world" longitude="0"

latitude="0" distance="0.4"/>

 </DefineShape>

 </DefineScene>

 <DefineScene id="1" device="tablet" time="250">

 <DefineEventAction id="event01"

onAction="changeChapter,1" />

 </DefineScene>

 <DefineScene id="2" device="tv" time="0">

 <DefineShape id="0" type="rectangle"

mediaFile="tv_set_1" size="0.64"/>

 </DefineScene>

 <DefineScene id="3" device="tv" time="250">

 <DefineEventAction id="event01"

onAction="changeChapter,1" />

 </DefineScene>

 </DefineChapter>

 <DefineChapter synctype="synchro_loop" id="1">

 <DefineScene id="0" device="tablet" time="0">

 <DefineShape id="theatre_screen2" type="sphericalCap"

mediaFile="sphere_set_2" startClip="wipeOpen,3" endClip="dissolve,3">

 <Anchor id="0" distance="0.9"/>

 </DefineShape>

 <DefineShape id="1" type="hotspot" size="0.05"

tooltip="First chapter" onActivate="changeChapterAll,0">

 <Anchor id="0" referenceFrame="world" longitude="0"

latitude="0" distance="0.4"/>

 </DefineShape>

 </DefineScene>

 <DefineScene id="1" device="tv" time="0">

 <DefineShape id="0" type="rectangle"

mediaFile="tv_set_2" size="0.64"/>

 </DefineScene>

 </DefineChapter>

</ITVEvents>

Figure 41: Sample ImmersiaTV metadata file.

94 D3.1 Design architecture Version 2.0, 30.01.2018

This file defines an event of two chapters. The chapter with id=0 and synchronized with the
session manager without loop. This chapter has scenes for two devices: TV and tablet. On tablet,
there is one spherical shape (id “theatre_screen1”) and a hotspot (id “1”). The hotspot is the
interactive element to travel to the second chapter (id ”1”) by user action.

The scene id ”1” triggers at 250 seconds after the start and launches the event action (id
“event01”). This, event will change to second chapter with id “1” automatically. In the same way,
in the TV device it will be execute at the same time.

The second chapter (id “1”) is synchronized and loopable, takes the length of the main video (id
“theatre_screen2”). Contains one spherical shape (id “theatre_screen2”) and a hotspot (id “1”).
The hotspot exits the loop and moves back to the first chapter all the devices.

6.9. Quality of Experience

6.9.1. Description

The QoE module receives a set of logging information from clients, analyses those data and
integrates the quality parameters into a QoE report. In Pilot 3, an additional Encoder Feedback
module will be developed as a control unit to steer the parameter settings of encoding based
on QoE advices. The QoE module contacts the encoder via a feedback connection and the QoE
reporting obtained from QoE Analysis module is transmitted to the Encoder sub-system.

6.9.2. Architecture

The architecture of the QoE module consists of five sub-modules:

1. To assess visual quality, QoE receives the video segments from the server and stores the
respective video frames. The stored frames are then analyzed using objective metrics.

2. A dedicated communications module manages the data acquisition from ImmersiaTV
clients. The QoE communication module receives the logging data and parses them to be
used in quality assessment. This system is scalable and can support multiple Clients.

3. The QoE Analysis module orchestrates client parameters and NR quality activities. It
consolidates and analyzes the NR quality data and integrates the client quality parameters
into a QoE figure of merit.

4. The results derived by the QoE Analysis module are then exposed through the QoE
Reporting module.

5. For Pilot 3, an additional Encoder Feedback module will derive encoder control
parameters from the data computed in the QoE Analysis module and transmit these to
the Encoder sub-system.

The overview of the QoE subsystem and the interfaces including the QoE-encoder feedback are
depicted in Figure 42.

95 D3.1 Design architecture Version 2.0, 30.01.2018

Figure 42 QoE subsystem and interfaces

6.9.3. Workflow

The encoder subsystem is dynamically controlled (in Pilot 3) with a feedback provided by QoE
subsystem.

Unlike a traditional rate distortion control in common encoders, the QoE system takes into
account additional information acquired from clients, such as visual attention, frame delays, and
no-reference visual quality metric values performed on the actual signals which are presented
to the viewer.

Pre-filtering uses the visual attention information acquired in real-time from viewers to reduce
the amount of self-information (entropy) of the omnidirectional video frames by applying
weighted Gaussian (or other suitable) filtering. This will be done based on statistical
interpretation of viewers’ focus of attention data derived from QoE report.

Bitrate control adjusts the output visual quality of the bitstream by changing the parameters of
the core encoder (H.265/HEVC) according to the information provided by the QoE Feedback
submodule.

The workflow and the tasks related to feedback loop between QoE module and encoder are
defined as follow:

1. Implementation of Encoder-QoE Feedback interface

2. QoE module: Bitrate control signal w.r.t integrated QoE information

3. Encoder: Bitrate dynamic control system according to QoE feedback

4. Encoder: Visual attention adaptive filtering

96 D3.1 Design architecture Version 2.0, 30.01.2018

7. CONCLUSIONS

This document presents the architecture design of the ImmersiaTV system being a base for all
components and tools. The document was created iteratively, what means that the system
architecture and components in section 4 which were focused on Pilot 1 implementation were
extended and described more precisely in section 5 defining Pilot 2. Both pilots were used for
gathering information and requirements for extensions planned in Pilot 3. Last pilot introduced
new functionalities that were demanded by users and the community during pilot
demonstrations.

Regarding Pilot 1, although the market of the omnidirectional cameras is very dynamic and new
models are presented by various vendors, most of the development still focuses on low-
resolution home devices for amateurs. The only way we can foresee to achieve the goals of
ImmersiaTV (high resolution high frame rate live camera) is to design and construct own
cameras that meet all the requirements. This was presented in Section 5, which reflects these
concerns and describes Orah 4i compact live camera and Studio.One omnidirectional camera
rig. As the Studio.One camera entered on the market and were ready for deploying for the end
of Pilot 2 and Pilot 3, the status update is also described in Section 6. The camera is mature
enough to provide very good quality and capture both off-line 360 video as well as live.

Regarding a codec, the H.264/AVC was selected for both Pilot 1 and Pilot 2. Adoption of
H.265/HEVC was delayed due to limited availability of end user devices, such as smartphones or
tablets. We believe, the use of H.265/HEVC encoding and decoding will be possible for Pilot 3.

It’s also important for Pilot 1 and 2 to define the list of statistics that will be gathered from all
components and find the way of analysing them by QoE tools. Logger module provided at the
end of Pilot 1 will enable to collect all necessary data, while advanced statistics gathering for
real-time QoE assessment will be delivered for Pilot 3. What is also important, there is a
difference in logging model described in previous version of this document (focused on Pilot 1).
The reason for that was simplification the logging process in C# development of the client and
using standard mechanisms of the C# and Unity 3D environment. In Pilot 2 and Pilot 3 we will
use new logging schema.

Distribution server and reception client are mostly the same across Pilots 1 and 2, due to the
fact, the ImmersiaTV partners kept in mind live scenarios at the beginning of the project.
However, they need to be extended to new functionalities for Pilot 3. One of the main issue is
support of the Exploration Mode, which means also changing and extending metadata.

Due to support broadcasters who transmit directional streams in traditional media – terrestrial,
cable and satellite TV, there was also need of advanced synchronization between these media
and internet streams provided by Distribution module. This functionality uses audio recognition
mechanisms and will be implemented in Phase 3.

During the project the consortium also noticed, that the immersive audio is one of key elements
of immersive experience around TV. That’s why the workflow of audio delivery has been planned
as an extension of the software developed within the project.

The nature of collaborative research and development caused that the presented architecture
was designed by incremental development of the tools and services. We believe that after
several iterations, testing of tools and solutions together with users and community, the final
product is mature enough to become good product at the end.

